
Instruction scheduling

Akim Demaille, Etienne Renault, Roland Levillain

May 19, 2018

CCMP2 Instruction scheduling May 19, 2018 1 / 57

Table of contents

1 Dependencies

2 Dependency graph

3 Instruction Pipeline

4 Minimizing stalls

5 Loops unrolling

6 Managing caches

CCMP2 Instruction scheduling May 19, 2018 2 / 57

Dependencies analysis 1/2

Two instructions are independent they can be permuted without altering
the consistency

The 3 following instructions are independent

inst1 : a ← 42
inst2 : b ← 51
inst3 : c ← 0

inst1, inst2 and inst3 can then be reordered

inst1 : a ← 42 inst1 : a ← 42 inst3 : c ← 0
inst2 : b ← 51 inst3 : c ← 0 inst1 : a ← 42
inst3 : c ← 0 inst2 : b ← 51 inst2 : b ← 51

inst1 : c ← 0 inst1 : b ← 51 inst3 : b ← 51
inst2 : b ← 51 inst3 : c ← 0 inst1 : a ← 42
inst3 : a ← 42 inst2 : a ← 42 inst2 : c ← 0

CCMP2 Instruction scheduling May 19, 2018 3 / 57

Dependencies analysis 1/2

Two instructions are independent they can be permuted without altering
the consistency

The 3 following instructions are independent

inst1 : a ← 42
inst2 : b ← 51
inst3 : c ← 0

inst1, inst2 and inst3 can then be reordered

inst1 : a ← 42 inst1 : a ← 42 inst3 : c ← 0
inst2 : b ← 51 inst3 : c ← 0 inst1 : a ← 42
inst3 : c ← 0 inst2 : b ← 51 inst2 : b ← 51

inst1 : c ← 0 inst1 : b ← 51 inst3 : b ← 51
inst2 : b ← 51 inst3 : c ← 0 inst1 : a ← 42
inst3 : a ← 42 inst2 : a ← 42 inst2 : c ← 0

CCMP2 Instruction scheduling May 19, 2018 3 / 57

Dependencies analysis 1/2

Two instructions are independent they can be permuted without altering
the consistency

The 3 following instructions are independent

inst1 : a ← 42
inst2 : b ← 51
inst3 : c ← 0

inst1, inst2 and inst3 can then be reordered

inst1 : a ← 42 inst1 : a ← 42 inst3 : c ← 0
inst2 : b ← 51 inst3 : c ← 0 inst1 : a ← 42
inst3 : c ← 0 inst2 : b ← 51 inst2 : b ← 51

inst1 : c ← 0 inst1 : b ← 51 inst3 : b ← 51
inst2 : b ← 51 inst3 : c ← 0 inst1 : a ← 42
inst3 : a ← 42 inst2 : a ← 42 inst2 : c ← 0

CCMP2 Instruction scheduling May 19, 2018 3 / 57

Dependencies analysis 2/2

Two instructions are dependent if the first one needs to be executed before
the second one.

The 3 following instructions are dependent, i.e. no reordering is
possible!

inst1 : a ← 42
inst2 : b ← a + 51
inst3 : c ← b × 12

Two kind of dependencies:
I Data dependencies: the instruction manipulates a ”variable”

computed by another instruction.

I Instruction dependencies: the instruction is a ”cjump”, the next
instruction depends of the ”cjump”.

CCMP2 Instruction scheduling May 19, 2018 4 / 57

Dependencies analysis 2/2

Two instructions are dependent if the first one needs to be executed before
the second one.

The 3 following instructions are dependent, i.e. no reordering is
possible!

inst1 : a ← 42
inst2 : b ← a + 51
inst3 : c ← b × 12

Two kind of dependencies:
I Data dependencies: the instruction manipulates a ”variable”

computed by another instruction.

I Instruction dependencies: the instruction is a ”cjump”, the next
instruction depends of the ”cjump”.

CCMP2 Instruction scheduling May 19, 2018 4 / 57

Dependencies analysis 2/2

Two instructions are dependent if the first one needs to be executed before
the second one.

The 3 following instructions are dependent, i.e. no reordering is
possible!

inst1 : a ← 42
inst2 : b ← a + 51
inst3 : c ← b × 12

Two kind of dependencies:
I Data dependencies: the instruction manipulates a ”variable”

computed by another instruction.

I Instruction dependencies: the instruction is a ”cjump”, the next
instruction depends of the ”cjump”.

CCMP2 Instruction scheduling May 19, 2018 4 / 57

Read after Write (RAW)

An instruction reads from a location after an earlier instruction has written
to it.

inst1 : lw $2, 0($4)

inst2 : addi $6, $2, 42

inst1 and inst2 cannot be permuted, otherwise inst2 would read an old
value for $2

CCMP2 Instruction scheduling May 19, 2018 5 / 57

Read after Write (RAW)

An instruction reads from a location after an earlier instruction has written
to it.

inst1 : lw $2, 0($4)

inst2 : addi $6, $2, 42

inst1 and inst2 cannot be permuted, otherwise inst2 would read an old
value for $2

CCMP2 Instruction scheduling May 19, 2018 5 / 57

Read after Write (RAW)

An instruction reads from a location after an earlier instruction has written
to it.

inst1 : lw $2, 0($4)

inst2 : addi $6, $2, 42

inst1 and inst2 cannot be permuted, otherwise inst2 would read an old
value for $2

CCMP2 Instruction scheduling May 19, 2018 5 / 57

Write after Read (WAR)

An instruction writes to a location after an earlier instruction has read
from it.

inst1 : lw $2, 0($4)

inst2 : addi $4, $12, 42

inst1 and inst2 cannot be permuted, otherwise inst1 would read a new
value for $4

CCMP2 Instruction scheduling May 19, 2018 6 / 57

Write after Read (WAR)

An instruction writes to a location after an earlier instruction has read
from it.

inst1 : lw $2, 0($4)

inst2 : addi $4, $12, 42

inst1 and inst2 cannot be permuted, otherwise inst1 would read a new
value for $4

CCMP2 Instruction scheduling May 19, 2018 6 / 57

Write after Read (WAR)

An instruction writes to a location after an earlier instruction has read
from it.

inst1 : lw $2, 0($4)

inst2 : addi $4, $12, 42

inst1 and inst2 cannot be permuted, otherwise inst1 would read a new
value for $4

CCMP2 Instruction scheduling May 19, 2018 6 / 57

Write after Write (WAW)

An instruction writes to a location after an earlier instruction has written
to it.

inst1 : add $1, $2, $3

inst2 : add $1, $5, $6

inst1 and inst2 cannot be permuted, otherwise inst1 would write an old
value in $1

CCMP2 Instruction scheduling May 19, 2018 7 / 57

Write after Write (WAW)

An instruction writes to a location after an earlier instruction has written
to it.

inst1 : add $1, $2, $3

inst2 : add $1, $5, $6

inst1 and inst2 cannot be permuted, otherwise inst1 would write an old
value in $1

CCMP2 Instruction scheduling May 19, 2018 7 / 57

Write after Write (WAW)

An instruction writes to a location after an earlier instruction has written
to it.

inst1 : add $1, $2, $3

inst2 : add $1, $5, $6

inst1 and inst2 cannot be permuted, otherwise inst1 would write an old
value in $1

CCMP2 Instruction scheduling May 19, 2018 7 / 57

Why and When reordering?

We would like to reorder the instructions within each basic block in a way
which:

preserves the dependencies between those instructions (and hence the
correctness of the program)

achieves the minimum possible number of pipeline stalls, i.e. two
instructions simultaneously in the pipeline manipulates same data,
registers, etc.

The two problems can be addressed separately (whew!).

CCMP2 Instruction scheduling May 19, 2018 8 / 57

Preserving and computing dependencies?

We construct a directed acyclic graph (DAG) to represent the
dependencies between instructions:

For each instruction in the basic block, create a corresponding vertex
in the graph

For each dependency between two instructions, create a corresponding
(annotated) edge in the graph. Note that this edge is annotated.

CCMP2 Instruction scheduling May 19, 2018 9 / 57

Computing the dependency graph

i1 : lw $1,0($10) i4 : sw $3,12($10) i7 : sw $3,16($10)

i2 : lw $2,4($10) i5 : lw $4,8($10)

i3 : add $3,$1,$2 i6 : add $3,$1,$4

i1

i2

i3

i4

i5

i6

i7

Type of dependency: RAW, WAW, WAR

CCMP2 Instruction scheduling May 19, 2018 10 / 57

Computing the dependency graph

i1 : lw $1,0($10) i4 : sw $3,12($10) i7 : sw $3,16($10)

i2 : lw $2,4($10) i5 : lw $4,8($10)

i3 : add $3,$1,$2 i6 : add $3,$1,$4

i1

i2

i3

i4

i5

i6

i7

Type of dependency: RAW, WAW, WAR

CCMP2 Instruction scheduling May 19, 2018 10 / 57

Computing the dependency graph

i1 : lw $1,0($10) i4 : sw $3,12($10) i7 : sw $3,16($10)

i2 : lw $2,4($10) i5 : lw $4,8($10)

i3 : add $3,$1,$2 i6 : add $3,$1,$4

i1

i2

i3

i4

i5

i6

i7

Type of dependency: RAW, WAW, WAR

CCMP2 Instruction scheduling May 19, 2018 10 / 57

Computing the dependency graph

i1 : lw $1,0($10) i4 : sw $3,12($10) i7 : sw $3,16($10)

i2 : lw $2,4($10) i5 : lw $4,8($10)

i3 : add $3,$1,$2 i6 : add $3,$1,$4

i1

i2

i3

i4

i5

i6

i7

Type of dependency: RAW, WAW, WAR

CCMP2 Instruction scheduling May 19, 2018 10 / 57

Computing the dependency graph

i1 : lw $1,0($10) i4 : sw $3,12($10) i7 : sw $3,16($10)

i2 : lw $2,4($10) i5 : lw $4,8($10)

i3 : add $3,$1,$2 i6 : add $3,$1,$4

i1

i2

i3

i4

i5

i6

i7

Type of dependency: RAW, WAW, WAR

CCMP2 Instruction scheduling May 19, 2018 10 / 57

Computing the dependency graph

i1 : lw $1,0($10) i4 : sw $3,12($10) i7 : sw $3,16($10)

i2 : lw $2,4($10) i5 : lw $4,8($10)

i3 : add $3,$1,$2 i6 : add $3,$1,$4

i1

i2

i3

i4

i5

i6

i7

Type of dependency: RAW, WAW, WAR

CCMP2 Instruction scheduling May 19, 2018 10 / 57

Computing the dependency graph

i1 : lw $1,0($10) i4 : sw $3,12($10) i7 : sw $3,16($10)

i2 : lw $2,4($10) i5 : lw $4,8($10)

i3 : add $3,$1,$2 i6 : add $3,$1,$4

i1

i2

i3

i4

i5

i6

i7

Type of dependency: RAW, WAW, WAR

CCMP2 Instruction scheduling May 19, 2018 10 / 57

Computing the dependency graph

i1 : lw $1,0($10) i4 : sw $3,12($10) i7 : sw $3,16($10)

i2 : lw $2,4($10) i5 : lw $4,8($10)

i3 : add $3,$1,$2 i6 : add $3,$1,$4

i1

i2

i3

i4

i5

i6

i7

Type of dependency: RAW, WAW, WAR

CCMP2 Instruction scheduling May 19, 2018 10 / 57

Computing the dependency graph

i1 : lw $1,0($10) i4 : sw $3,12($10) i7 : sw $3,16($10)

i2 : lw $2,4($10) i5 : lw $4,8($10)

i3 : add $3,$1,$2 i6 : add $3,$1,$4

i1

i2

i3

i4

i5

i6

i7

Type of dependency: RAW, WAW, WAR

CCMP2 Instruction scheduling May 19, 2018 10 / 57

Computing the dependency graph

i1 : lw $1,0($10) i4 : sw $3,12($10) i7 : sw $3,16($10)

i2 : lw $2,4($10) i5 : lw $4,8($10)

i3 : add $3,$1,$2 i6 : add $3,$1,$4

i1

i2

i3

i4

i5

i6

i7

Type of dependency: RAW, WAW, WAR

CCMP2 Instruction scheduling May 19, 2018 10 / 57

Computing the dependency graph

i1 : lw $1,0($10) i4 : sw $3,12($10) i7 : sw $3,16($10)

i2 : lw $2,4($10) i5 : lw $4,8($10)

i3 : add $3,$1,$2 i6 : add $3,$1,$4

i1

i2

i3

i4

i5

i6

i7

Type of dependency: RAW, WAW, WAR

CCMP2 Instruction scheduling May 19, 2018 10 / 57

Computing the dependency graph

i1 : lw $1,0($10) i4 : sw $3,12($10) i7 : sw $3,16($10)

i2 : lw $2,4($10) i5 : lw $4,8($10)

i3 : add $3,$1,$2 i6 : add $3,$1,$4

i1

i2

i3

i4

i5

i6

i7

Type of dependency: RAW, WAW, WAR

CCMP2 Instruction scheduling May 19, 2018 10 / 57

Computing the dependency graph

i1 : lw $1,0($10) i4 : sw $3,12($10) i7 : sw $3,16($10)

i2 : lw $2,4($10) i5 : lw $4,8($10)

i3 : add $3,$1,$2 i6 : add $3,$1,$4

i1

i2

i3

i4

i5

i6

i7

Type of dependency: RAW, WAW, WAR

CCMP2 Instruction scheduling May 19, 2018 10 / 57

Computing the dependency graph

i1 : lw $1,0($10) i4 : sw $3,12($10) i7 : sw $3,16($10)

i2 : lw $2,4($10) i5 : lw $4,8($10)

i3 : add $3,$1,$2 i6 : add $3,$1,$4

i1

i2

i3

i4

i5

i6

i7

Type of dependency: RAW, WAW, WAR

CCMP2 Instruction scheduling May 19, 2018 10 / 57

Computing the dependency graph

i1 : lw $1,0($10) i4 : sw $3,12($10) i7 : sw $3,16($10)

i2 : lw $2,4($10) i5 : lw $4,8($10)

i3 : add $3,$1,$2 i6 : add $3,$1,$4

i1

i2

i3

i4

i5

i6

i7

Type of dependency: RAW, WAW, WAR

CCMP2 Instruction scheduling May 19, 2018 10 / 57

Preserving dependencies: Critical Path 1/2

The critical path represents the longest path between two nodes. We add
delays (weights) to edges:

0 for WAW and WAR dependencies

2 for RAW dependencies with memory access

1 for other RAW dependencies

i1

i2

i3

i4

i5

i6

i7

2

22 2 0

2

0

2

2

CCMP2 Instruction scheduling May 19, 2018 11 / 57

Preserving dependencies: Critical Path 1/2

The critical path represents the longest path between two nodes. We add
delays (weights) to edges:

0 for WAW and WAR dependencies

2 for RAW dependencies with memory access

1 for other RAW dependencies

i1

i2

i3

i4

i5

i6

i7

2

22 2 0

2

0

2

2

CCMP2 Instruction scheduling May 19, 2018 11 / 57

Preserving dependencies: Critical Path 2/2

Any (reverse) topological sort of this DAG (i.e. any linear ordering of the
vertices which keeps all the edges “pointing forwards”) will maintain the
dependencies and hence preserve the correctness of the program.

Algorithm:

Associate a weight 1 to all ”instruction node”

For all nodes ni in topological postorder
I If ni is not a leaf

F For all nodes nj in succ(ni) do
ni.weight ← max (ni.weight, nj.weight+ delay(ni, nj))

Remember ”important” edges during computations, they will form the
critical path.

CCMP2 Instruction scheduling May 19, 2018 12 / 57

Computing the critical path

Delays: blue arrows 2, red and green 0

i1:1

i2:1

i3:1

i4:1

i5:1

i6:1

i7:1

i7:1

i7 doesn’t have successors, skip it!

i7:1

i6:1

delay(i6, i7)=2 > 1, change i6 weight!

i6:3

i5:1

delay(i5, i6)=2 > 1, change i5 weight!

i5:5

i4:1

i6.weight=3 > 1, change i4 weight!

i4:3

i3:1

delay(i3, i4) + i4.weight=3 > 1, change i3 weight!

i3:5i1:1

delay(i1, i3) + i3.weight=7 > 1, change i1 weight!

i1:7

i2:1

delay(i2, i3) + i3.weight=7 > 1, change i2 weight!

i2:7

CCMP2 Instruction scheduling May 19, 2018 13 / 57

Computing the critical path

Delays: blue arrows 2, red and green 0

i1:1

i2:1

i3:1

i4:1

i5:1

i6:1

i7:1i7:1

i7 doesn’t have successors, skip it!

i7:1

i6:1

delay(i6, i7)=2 > 1, change i6 weight!

i6:3

i5:1

delay(i5, i6)=2 > 1, change i5 weight!

i5:5

i4:1

i6.weight=3 > 1, change i4 weight!

i4:3

i3:1

delay(i3, i4) + i4.weight=3 > 1, change i3 weight!

i3:5i1:1

delay(i1, i3) + i3.weight=7 > 1, change i1 weight!

i1:7

i2:1

delay(i2, i3) + i3.weight=7 > 1, change i2 weight!

i2:7

CCMP2 Instruction scheduling May 19, 2018 13 / 57

Computing the critical path

Delays: blue arrows 2, red and green 0

i1:1

i2:1

i3:1

i4:1

i5:1

i6:1

i7:1

i7:1

i7 doesn’t have successors, skip it!

i7:1

i6:1

delay(i6, i7)=2 > 1, change i6 weight!

i6:3

i5:1

delay(i5, i6)=2 > 1, change i5 weight!

i5:5

i4:1

i6.weight=3 > 1, change i4 weight!

i4:3

i3:1

delay(i3, i4) + i4.weight=3 > 1, change i3 weight!

i3:5i1:1

delay(i1, i3) + i3.weight=7 > 1, change i1 weight!

i1:7

i2:1

delay(i2, i3) + i3.weight=7 > 1, change i2 weight!

i2:7

CCMP2 Instruction scheduling May 19, 2018 13 / 57

Computing the critical path

Delays: blue arrows 2, red and green 0

i1:1

i2:1

i3:1

i4:1

i5:1

i6:1

i7:1

i7:1

i7 doesn’t have successors, skip it!

i7:1

i6:1

delay(i6, i7)=2 > 1, change i6 weight!

i6:3

i5:1

delay(i5, i6)=2 > 1, change i5 weight!

i5:5

i4:1

i6.weight=3 > 1, change i4 weight!

i4:3

i3:1

delay(i3, i4) + i4.weight=3 > 1, change i3 weight!

i3:5i1:1

delay(i1, i3) + i3.weight=7 > 1, change i1 weight!

i1:7

i2:1

delay(i2, i3) + i3.weight=7 > 1, change i2 weight!

i2:7

CCMP2 Instruction scheduling May 19, 2018 13 / 57

Computing the critical path

Delays: blue arrows 2, red and green 0

i1:1

i2:1

i3:1

i4:1

i5:1

i6:1

i7:1

i7:1

i7 doesn’t have successors, skip it!

i7:1

i6:1

delay(i6, i7)=2 > 1, change i6 weight!

i6:3

i5:1

delay(i5, i6)=2 > 1, change i5 weight!

i5:5

i4:1

i6.weight=3 > 1, change i4 weight!

i4:3

i3:1

delay(i3, i4) + i4.weight=3 > 1, change i3 weight!

i3:5i1:1

delay(i1, i3) + i3.weight=7 > 1, change i1 weight!

i1:7

i2:1

delay(i2, i3) + i3.weight=7 > 1, change i2 weight!

i2:7

CCMP2 Instruction scheduling May 19, 2018 13 / 57

Computing the critical path

Delays: blue arrows 2, red and green 0

i1:1

i2:1

i3:1

i4:1

i5:1

i6:1

i7:1

i7:1

i7 doesn’t have successors, skip it!

i7:1

i6:1

delay(i6, i7)=2 > 1, change i6 weight!

i6:3

i5:1

delay(i5, i6)=2 > 1, change i5 weight!

i5:5

i4:1

i6.weight=3 > 1, change i4 weight!

i4:3

i3:1

delay(i3, i4) + i4.weight=3 > 1, change i3 weight!

i3:5i1:1

delay(i1, i3) + i3.weight=7 > 1, change i1 weight!

i1:7

i2:1

delay(i2, i3) + i3.weight=7 > 1, change i2 weight!

i2:7

CCMP2 Instruction scheduling May 19, 2018 13 / 57

Computing the critical path

Delays: blue arrows 2, red and green 0

i1:1

i2:1

i3:1

i4:1

i5:1

i6:1

i7:1

i7:1

i7 doesn’t have successors, skip it!

i7:1

i6:1

delay(i6, i7)=2 > 1, change i6 weight!

i6:3

i5:1

delay(i5, i6)=2 > 1, change i5 weight!

i5:5

i4:1

i6.weight=3 > 1, change i4 weight!

i4:3

i3:1

delay(i3, i4) + i4.weight=3 > 1, change i3 weight!

i3:5i1:1

delay(i1, i3) + i3.weight=7 > 1, change i1 weight!

i1:7

i2:1

delay(i2, i3) + i3.weight=7 > 1, change i2 weight!

i2:7

CCMP2 Instruction scheduling May 19, 2018 13 / 57

Computing the critical path

Delays: blue arrows 2, red and green 0

i1:1

i2:1

i3:1

i4:1

i5:1

i6:1

i7:1

i7:1

i7 doesn’t have successors, skip it!

i7:1

i6:1

delay(i6, i7)=2 > 1, change i6 weight!

i6:3

i5:1

delay(i5, i6)=2 > 1, change i5 weight!

i5:5

i4:1

i6.weight=3 > 1, change i4 weight!

i4:3

i3:1

delay(i3, i4) + i4.weight=3 > 1, change i3 weight!

i3:5i1:1

delay(i1, i3) + i3.weight=7 > 1, change i1 weight!

i1:7

i2:1

delay(i2, i3) + i3.weight=7 > 1, change i2 weight!

i2:7

CCMP2 Instruction scheduling May 19, 2018 13 / 57

Computing the critical path

Delays: blue arrows 2, red and green 0

i1:1

i2:1

i3:1

i4:1

i5:1

i6:1

i7:1

i7:1

i7 doesn’t have successors, skip it!

i7:1

i6:1

delay(i6, i7)=2 > 1, change i6 weight!

i6:3

i5:1

delay(i5, i6)=2 > 1, change i5 weight!

i5:5

i4:1

i6.weight=3 > 1, change i4 weight!

i4:3

i3:1

delay(i3, i4) + i4.weight=3 > 1, change i3 weight!

i3:5i1:1

delay(i1, i3) + i3.weight=7 > 1, change i1 weight!

i1:7

i2:1

delay(i2, i3) + i3.weight=7 > 1, change i2 weight!

i2:7

CCMP2 Instruction scheduling May 19, 2018 13 / 57

Computing the critical path

Delays: blue arrows 2, red and green 0

i1:1

i2:1

i3:1

i4:1

i5:1

i6:1

i7:1

i7:1

i7 doesn’t have successors, skip it!

i7:1

i6:1

delay(i6, i7)=2 > 1, change i6 weight!

i6:3

i5:1

delay(i5, i6)=2 > 1, change i5 weight!

i5:5

i4:1

i6.weight=3 > 1, change i4 weight!

i4:3

i3:1

delay(i3, i4) + i4.weight=3 > 1, change i3 weight!

i3:5

i1:1

delay(i1, i3) + i3.weight=7 > 1, change i1 weight!

i1:7

i2:1

delay(i2, i3) + i3.weight=7 > 1, change i2 weight!

i2:7

CCMP2 Instruction scheduling May 19, 2018 13 / 57

Computing the critical path

Delays: blue arrows 2, red and green 0

i1:1

i2:1

i3:1

i4:1

i5:1

i6:1

i7:1

i7:1

i7 doesn’t have successors, skip it!

i7:1

i6:1

delay(i6, i7)=2 > 1, change i6 weight!

i6:3

i5:1

delay(i5, i6)=2 > 1, change i5 weight!

i5:5

i4:1

i6.weight=3 > 1, change i4 weight!

i4:3

i3:1

delay(i3, i4) + i4.weight=3 > 1, change i3 weight!

i3:5i1:1

delay(i1, i3) + i3.weight=7 > 1, change i1 weight!

i1:7

i2:1

delay(i2, i3) + i3.weight=7 > 1, change i2 weight!

i2:7

CCMP2 Instruction scheduling May 19, 2018 13 / 57

Computing the critical path

Delays: blue arrows 2, red and green 0

i1:1

i2:1

i3:1

i4:1

i5:1

i6:1

i7:1

i7:1

i7 doesn’t have successors, skip it!

i7:1

i6:1

delay(i6, i7)=2 > 1, change i6 weight!

i6:3

i5:1

delay(i5, i6)=2 > 1, change i5 weight!

i5:5

i4:1

i6.weight=3 > 1, change i4 weight!

i4:3

i3:1

delay(i3, i4) + i4.weight=3 > 1, change i3 weight!

i3:5

i1:1

delay(i1, i3) + i3.weight=7 > 1, change i1 weight!

i1:7

i2:1

delay(i2, i3) + i3.weight=7 > 1, change i2 weight!

i2:7

CCMP2 Instruction scheduling May 19, 2018 13 / 57

Computing the critical path

Delays: blue arrows 2, red and green 0

i1:1

i2:1

i3:1

i4:1

i5:1

i6:1

i7:1

i7:1

i7 doesn’t have successors, skip it!

i7:1

i6:1

delay(i6, i7)=2 > 1, change i6 weight!

i6:3

i5:1

delay(i5, i6)=2 > 1, change i5 weight!

i5:5

i4:1

i6.weight=3 > 1, change i4 weight!

i4:3

i3:1

delay(i3, i4) + i4.weight=3 > 1, change i3 weight!

i3:5

i1:1

delay(i1, i3) + i3.weight=7 > 1, change i1 weight!

i1:7

i2:1

delay(i2, i3) + i3.weight=7 > 1, change i2 weight!

i2:7

CCMP2 Instruction scheduling May 19, 2018 13 / 57

Computing the critical path

Delays: blue arrows 2, red and green 0

i1:1

i2:1

i3:1

i4:1

i5:1

i6:1

i7:1

i7:1

i7 doesn’t have successors, skip it!

i7:1

i6:1

delay(i6, i7)=2 > 1, change i6 weight!

i6:3

i5:1

delay(i5, i6)=2 > 1, change i5 weight!

i5:5

i4:1

i6.weight=3 > 1, change i4 weight!

i4:3

i3:1

delay(i3, i4) + i4.weight=3 > 1, change i3 weight!

i3:5

i1:1

delay(i1, i3) + i3.weight=7 > 1, change i1 weight!

i1:7

i2:1

delay(i2, i3) + i3.weight=7 > 1, change i2 weight!

i2:7

CCMP2 Instruction scheduling May 19, 2018 13 / 57

So many orders . . . with one critial path

i1

i2

i3

i4

i5

i6

i7

i1,i2,i3,i4,i5,i6,i7 i1,i2,i3,i5,i4,i6,i7 i2,i1,i3,i5,i4,i6,i7 i2,i1,i3,i4,i5,i6,i7
i1,i2,i5,i3,i4,i6,i7 i2,i1,i5,i3,i4,i6,i7 i1,i5,i2,i3,i4,i6,i7 i2,i5,i1,i3,i4,i6,i7

i5,i1,i2,i3,i4,i6,i7 i5,i2,i1,i3,i4,i6,i7

All these permutations respect dependencies
but is there a best instruction scheduling?

CCMP2 Instruction scheduling May 19, 2018 14 / 57

So many orders . . . with one critial path

i1

i2

i3

i4

i5

i6

i7

i1,i2,i3,i4,i5,i6,i7 i1,i2,i3,i5,i4,i6,i7 i2,i1,i3,i5,i4,i6,i7 i2,i1,i3,i4,i5,i6,i7
i1,i2,i5,i3,i4,i6,i7 i2,i1,i5,i3,i4,i6,i7 i1,i5,i2,i3,i4,i6,i7 i2,i5,i1,i3,i4,i6,i7

i5,i1,i2,i3,i4,i6,i7 i5,i2,i1,i3,i4,i6,i7

All these permutations respect dependencies
but is there a best instruction scheduling?

CCMP2 Instruction scheduling May 19, 2018 14 / 57

Performances and Pipeline

Not all orders are equivalents!

Some dependencies can bring hazards that slow down performances
inside of the pipeline

Hazard occurs when:
I 1 instruction requires the previous instruction has finished
I 2 instructions need the same data at the same time: one of the two is

blocked

CCMP2 Instruction scheduling May 19, 2018 15 / 57

Instructions Pipeline

The microprocessor (MIPS) contains 5 stages:

if: Instruction Fetch

id: Instruction Decode. Read operands from registers, compute the
address of the next instruction

ex Execute instructions requiring the ALU

me Read/write into Memory

wb Write Back. Results are written into registers.

cycle1 cycle2 cycle3 cycle4 cycle5 cycle6 cycle7 cycle8 cycle9

instr1 if id ex me wb
instr2 if id ex me wb
instr3 if id ex me wb
instr4 if id ex me wb
instr5 if id ex me wb

CCMP2 Instruction scheduling May 19, 2018 16 / 57

Hazard: RAW dependencies 1/2

Some instruction requires a result computed by a previous one!

Consider the following example:

cycle1 cycle2 cycle3 cycle4 cycle5 cycle6 cycle7

lw $2, 0($4) if id ex me wb
addi $5, $2, 10 if id ex me wb

lw produces its result into $2 during the me stage

addi requires $2 for the ex stage

In this example, 1 stall (cycle 4)

The goal of risc architectures is to produce one per cycle!

CCMP2 Instruction scheduling May 19, 2018 17 / 57

Hazard: RAW dependencies 2/2

Consider now the following example:

cycle1 cycle2 cycle3 cycle4 cycle5 cycle6 cycle7 cycle8

lw $2, 0($4) if id ex me wb
addi $5, $2, 10 if id ex me wb
add $12, $9, $11 if id ex me wb

Let’s look . . . instruction 3 is independent from the others so we can
change the order!

cycle1 cycle2 cycle3 cycle4 cycle5 cycle6 cycle7 cycle8

lw $2, 0($4) if id ex me wb
add $12, $9, $11 if id ex me wb
addi $5, $2, 10 if id ex me wb

CCMP2 Instruction scheduling May 19, 2018 18 / 57

Hazard: RAW dependencies 2/2

Consider now the following example:

cycle1 cycle2 cycle3 cycle4 cycle5 cycle6 cycle7 cycle8

lw $2, 0($4) if id ex me wb
addi $5, $2, 10 if id ex me wb
add $12, $9, $11 if id ex me wb

Let’s look . . . instruction 3 is independent from the others

so we can
change the order!

cycle1 cycle2 cycle3 cycle4 cycle5 cycle6 cycle7 cycle8

lw $2, 0($4) if id ex me wb
add $12, $9, $11 if id ex me wb
addi $5, $2, 10 if id ex me wb

CCMP2 Instruction scheduling May 19, 2018 18 / 57

Hazard: RAW dependencies 2/2

Consider now the following example:

cycle1 cycle2 cycle3 cycle4 cycle5 cycle6 cycle7 cycle8

lw $2, 0($4) if id ex me wb
addi $5, $2, 10 if id ex me wb
add $12, $9, $11 if id ex me wb

Let’s look . . . instruction 3 is independent from the others so we can
change the order!

cycle1 cycle2 cycle3 cycle4 cycle5 cycle6 cycle7 cycle8

lw $2, 0($4) if id ex me wb
add $12, $9, $11 if id ex me wb
addi $5, $2, 10 if id ex me wb

CCMP2 Instruction scheduling May 19, 2018 18 / 57

Hazard: WAW dependencies

Two instructions write in the same register!

Consider the following example:

cycle1 cycle2 cycle3 cycle4 cycle5 cycle6

addi $5, $11, 42 if id ex me wb
addi $5, $2, 10 if id ex me wb

WAW do not produce stalls !
(even when writing in the same memory address)

CCMP2 Instruction scheduling May 19, 2018 19 / 57

Hazard: WAR dependencies

One instruction writes where a previous one reads!

Consider the following example:

cycle1 cycle2 cycle3 cycle4 cycle5 cycle6

addi $5, $11, 42 if id ex me wb
addi $11, $2, 10 if id ex me wb

WAR do not produce stalls !

CCMP2 Instruction scheduling May 19, 2018 20 / 57

Back to the example – without scheduling

i1 : lw $1,0($10) i4 : sw $3,12($10) i7 : sw $3,16($10)

i2 : lw $2,4($10) i5 : lw $4,8($10)

i3 : add $3,$1,$2 i6 : add $3,$1,$4

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13

i1 if id ex me wb
i2 if id ex me wb
i3 if id ex me wb
i4 if id ex me wb
i5 if id ex me wb
i6 if id ex me wb
i7 if id ex me wb

Without scheduling: 2 dependencies, 2 stalls, 13 cycles!

CCMP2 Instruction scheduling May 19, 2018 21 / 57

Back to the example – without scheduling

i1 : lw $1,0($10) i4 : sw $3,12($10) i7 : sw $3,16($10)

i2 : lw $2,4($10) i5 : lw $4,8($10)

i3 : add $3,$1,$2 i6 : add $3,$1,$4

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13

i1 if id ex me wb
i2 if id ex me wb
i3 if id ex me wb
i4 if id ex me wb
i5 if id ex me wb
i6 if id ex me wb
i7 if id ex me wb

Without scheduling: 2 dependencies, 2 stalls, 13 cycles!

CCMP2 Instruction scheduling May 19, 2018 21 / 57

Minimizing Stalls – First approach

Each time we emit the next instruction, we should try to choose one which

P1 does not conflict with the previous emitted instruction

P2: is most likely to conflict if first of a pair (e.g. prefer lw to add)

P3: is as far away as possible (along paths in the DAG) from an
instruction which can validly be scheduled last

Algorithm:

Compute the dependency graph

While the list of candidate instructions is not empty
I If one instruction satisfies P1, P2, and P3: remove it from the list and

emit it.
F Remove the instruction from the DAG and insert the newly minimal

elements into the candidate list.

I Otherwise emit a nop instruction

CCMP2 Instruction scheduling May 19, 2018 22 / 57

Minimizing Stalls – First approach

Each time we emit the next instruction, we should try to choose one which

P1 does not conflict with the previous emitted instruction

P2: is most likely to conflict if first of a pair (e.g. prefer lw to add)

P3: is as far away as possible (along paths in the DAG) from an
instruction which can validly be scheduled last

Algorithm:

Compute the dependency graph

While the list of candidate instructions is not empty
I If one instruction satisfies P1, P2, and P3: remove it from the list and

emit it.
F Remove the instruction from the DAG and insert the newly minimal

elements into the candidate list.

I Otherwise emit a nop instruction

CCMP2 Instruction scheduling May 19, 2018 22 / 57

Applying scheduling algorithm to the example

i1 : lw $1,0($10) i4 : sw $3,12($10) i7 : sw $3,16($10)

i2 : lw $2,4($10) i5 : lw $4,8($10)

i3 : add $3,$1,$2 i6 : add $3,$1,$4

i1

i2

i3

i4

i5

i6

i7

Candidates = {i1, i2, i5}
Final Order =

i1

Choose i1 since it satisfies P1, P2 and P3

CCMP2 Instruction scheduling May 19, 2018 23 / 57

Applying scheduling algorithm to the example

i1 : lw $1,0($10) i4 : sw $3,12($10) i7 : sw $3,16($10)

i2 : lw $2,4($10) i5 : lw $4,8($10)

i3 : add $3,$1,$2 i6 : add $3,$1,$4

i1

i2

i3

i4

i5

i6

i7

Candidates = {i1, i2, i5}
Final Order =

i1

Choose i1 since it satisfies P1, P2 and P3

CCMP2 Instruction scheduling May 19, 2018 23 / 57

Applying scheduling algorithm to the example

i1 : lw $1,0($10) i4 : sw $3,12($10) i7 : sw $3,16($10)

i2 : lw $2,4($10) i5 : lw $4,8($10)

i3 : add $3,$1,$2 i6 : add $3,$1,$4

i1

i2

i3

i4

i5

i6

i7

Candidates = {i1, i2, i5}
Final Order = i1

Choose i1 since it satisfies P1, P2 and P3

CCMP2 Instruction scheduling May 19, 2018 23 / 57

Applying scheduling algorithm to the example

i1 : lw $1,0($10) i4 : sw $3,12($10) i7 : sw $3,16($10)

i2 : lw $2,4($10) i5 : lw $4,8($10)

i3 : add $3,$1,$2 i6 : add $3,$1,$4

i1

i2

i3

i4

i5

i6

i7

Candidates = {i1, i2, i5}
Final Order = i1

Choose i1 since it satisfies P1, P2 and P3

CCMP2 Instruction scheduling May 19, 2018 23 / 57

Applying scheduling algorithm to the example

i1 : lw $1,0($10) i4 : sw $3,12($10) i7 : sw $3,16($10)

i2 : lw $2,4($10) i5 : lw $4,8($10)

i3 : add $3,$1,$2 i6 : add $3,$1,$4

i1

i2

i3

i4

i5

i6

i7

Candidates = {i2, i5}
Final Order = i1

, i2

Choose i2 since it satisfies P1, P2 and P3

CCMP2 Instruction scheduling May 19, 2018 24 / 57

Applying scheduling algorithm to the example

i1 : lw $1,0($10) i4 : sw $3,12($10) i7 : sw $3,16($10)

i2 : lw $2,4($10) i5 : lw $4,8($10)

i3 : add $3,$1,$2 i6 : add $3,$1,$4

i1

i2

i3

i4

i5

i6

i7

Candidates = {i2, i5}
Final Order = i1

, i2

Choose i2 since it satisfies P1, P2 and P3

CCMP2 Instruction scheduling May 19, 2018 24 / 57

Applying scheduling algorithm to the example

i1 : lw $1,0($10) i4 : sw $3,12($10) i7 : sw $3,16($10)

i2 : lw $2,4($10) i5 : lw $4,8($10)

i3 : add $3,$1,$2 i6 : add $3,$1,$4

i1

i2

i3

i4

i5

i6

i7

Candidates = {i2, i5}
Final Order = i1, i2

Choose i2 since it satisfies P1, P2 and P3

CCMP2 Instruction scheduling May 19, 2018 24 / 57

Applying scheduling algorithm to the example

i1 : lw $1,0($10) i4 : sw $3,12($10) i7 : sw $3,16($10)

i2 : lw $2,4($10) i5 : lw $4,8($10)

i3 : add $3,$1,$2 i6 : add $3,$1,$4

i1

i2

i3

i4

i5

i6

i7

Candidates = {i2, i5}
Final Order = i1, i2

Choose i2 since it satisfies P1, P2 and P3

CCMP2 Instruction scheduling May 19, 2018 24 / 57

Applying scheduling algorithm to the example

i1 : lw $1,0($10) i4 : sw $3,12($10) i7 : sw $3,16($10)

i2 : lw $2,4($10) i5 : lw $4,8($10)

i3 : add $3,$1,$2 i6 : add $3,$1,$4

i1

i2

i3

i4

i5

i6

i7

Candidates = {i5, i3}
Final Order = i1, i2

, i5

Choose i5 since it satisfies P1, P2 and P3

CCMP2 Instruction scheduling May 19, 2018 25 / 57

Applying scheduling algorithm to the example

i1 : lw $1,0($10) i4 : sw $3,12($10) i7 : sw $3,16($10)

i2 : lw $2,4($10) i5 : lw $4,8($10)

i3 : add $3,$1,$2 i6 : add $3,$1,$4

i1

i2

i3

i4

i5

i6

i7

Candidates = {i5, i3}
Final Order = i1, i2

, i5

Choose i5 since it satisfies P1, P2 and P3

CCMP2 Instruction scheduling May 19, 2018 25 / 57

Applying scheduling algorithm to the example

i1 : lw $1,0($10) i4 : sw $3,12($10) i7 : sw $3,16($10)

i2 : lw $2,4($10) i5 : lw $4,8($10)

i3 : add $3,$1,$2 i6 : add $3,$1,$4

i1

i2

i3

i4

i5

i6

i7

Candidates = {i5, i3}
Final Order = i1, i2 , i5

Choose i5 since it satisfies P1, P2 and P3

CCMP2 Instruction scheduling May 19, 2018 25 / 57

Applying scheduling algorithm to the example

i1 : lw $1,0($10) i4 : sw $3,12($10) i7 : sw $3,16($10)

i2 : lw $2,4($10) i5 : lw $4,8($10)

i3 : add $3,$1,$2 i6 : add $3,$1,$4

i1

i2

i3

i4

i5

i6

i7

Candidates = {i5, i3}
Final Order = i1, i2 , i5

Choose i5 since it satisfies P1, P2 and P3

CCMP2 Instruction scheduling May 19, 2018 25 / 57

Applying scheduling algorithm to the example

i1 : lw $1,0($10) i4 : sw $3,12($10) i7 : sw $3,16($10)

i2 : lw $2,4($10) i5 : lw $4,8($10)

i3 : add $3,$1,$2 i6 : add $3,$1,$4

i1

i2

i3

i4

i5

i6

i7

Candidates = {i3}
Final Order = i1, i2, i5

, i3

Choose i3 since it satisfies P1, P2 and P3

CCMP2 Instruction scheduling May 19, 2018 26 / 57

Applying scheduling algorithm to the example

i1 : lw $1,0($10) i4 : sw $3,12($10) i7 : sw $3,16($10)

i2 : lw $2,4($10) i5 : lw $4,8($10)

i3 : add $3,$1,$2 i6 : add $3,$1,$4

i1

i2

i3

i4

i5

i6

i7

Candidates = {i3}
Final Order = i1, i2, i5

, i3

Choose i3 since it satisfies P1, P2 and P3

CCMP2 Instruction scheduling May 19, 2018 26 / 57

Applying scheduling algorithm to the example

i1 : lw $1,0($10) i4 : sw $3,12($10) i7 : sw $3,16($10)

i2 : lw $2,4($10) i5 : lw $4,8($10)

i3 : add $3,$1,$2 i6 : add $3,$1,$4

i1

i2

i3

i4

i5

i6

i7

Candidates = {i3}
Final Order = i1, i2, i5, i3

Choose i3 since it satisfies P1, P2 and P3

CCMP2 Instruction scheduling May 19, 2018 26 / 57

Applying scheduling algorithm to the example

i1 : lw $1,0($10) i4 : sw $3,12($10) i7 : sw $3,16($10)

i2 : lw $2,4($10) i5 : lw $4,8($10)

i3 : add $3,$1,$2 i6 : add $3,$1,$4

i1

i2

i3

i4

i5

i6

i7

Candidates = {i3}
Final Order = i1, i2, i5, i3

Choose i3 since it satisfies P1, P2 and P3

CCMP2 Instruction scheduling May 19, 2018 26 / 57

Applying scheduling algorithm to the example

i1 : lw $1,0($10) i4 : sw $3,12($10) i7 : sw $3,16($10)

i2 : lw $2,4($10) i5 : lw $4,8($10)

i3 : add $3,$1,$2 i6 : add $3,$1,$4

i1

i2

i3

i4

i5

i6

i7

Candidates = {i4}
Final Order = i1, i2, i5, i3

, i4

Choose i4 since it satisfies P1, P2 and P3

CCMP2 Instruction scheduling May 19, 2018 27 / 57

Applying scheduling algorithm to the example

i1 : lw $1,0($10) i4 : sw $3,12($10) i7 : sw $3,16($10)

i2 : lw $2,4($10) i5 : lw $4,8($10)

i3 : add $3,$1,$2 i6 : add $3,$1,$4

i1

i2

i3

i4

i5

i6

i7

Candidates = {i4}
Final Order = i1, i2, i5, i3

, i4

Choose i4 since it satisfies P1, P2 and P3

CCMP2 Instruction scheduling May 19, 2018 27 / 57

Applying scheduling algorithm to the example

i1 : lw $1,0($10) i4 : sw $3,12($10) i7 : sw $3,16($10)

i2 : lw $2,4($10) i5 : lw $4,8($10)

i3 : add $3,$1,$2 i6 : add $3,$1,$4

i1

i2

i3

i4

i5

i6

i7

Candidates = {i4}
Final Order = i1, i2, i5, i3, i4

Choose i4 since it satisfies P1, P2 and P3

CCMP2 Instruction scheduling May 19, 2018 27 / 57

Applying scheduling algorithm to the example

i1 : lw $1,0($10) i4 : sw $3,12($10) i7 : sw $3,16($10)

i2 : lw $2,4($10) i5 : lw $4,8($10)

i3 : add $3,$1,$2 i6 : add $3,$1,$4

i1

i2

i3

i4

i5

i6

i7

Candidates = {i4}
Final Order = i1, i2, i5, i3, i4

Choose i4 since it satisfies P1, P2 and P3

CCMP2 Instruction scheduling May 19, 2018 27 / 57

Applying scheduling algorithm to the example

i1 : lw $1,0($10) i4 : sw $3,12($10) i7 : sw $3,16($10)

i2 : lw $2,4($10) i5 : lw $4,8($10)

i3 : add $3,$1,$2 i6 : add $3,$1,$4

i1

i2

i3

i4

i5

i6

i7

Candidates = {i6}
Final Order = i1, i2, i5, i3, i4

, i6

Choose i6 since it satisfies P1, P2 and P3

CCMP2 Instruction scheduling May 19, 2018 28 / 57

Applying scheduling algorithm to the example

i1 : lw $1,0($10) i4 : sw $3,12($10) i7 : sw $3,16($10)

i2 : lw $2,4($10) i5 : lw $4,8($10)

i3 : add $3,$1,$2 i6 : add $3,$1,$4

i1

i2

i3

i4

i5

i6

i7

Candidates = {i6}
Final Order = i1, i2, i5, i3, i4

, i6

Choose i6 since it satisfies P1, P2 and P3

CCMP2 Instruction scheduling May 19, 2018 28 / 57

Applying scheduling algorithm to the example

i1 : lw $1,0($10) i4 : sw $3,12($10) i7 : sw $3,16($10)

i2 : lw $2,4($10) i5 : lw $4,8($10)

i3 : add $3,$1,$2 i6 : add $3,$1,$4

i1

i2

i3

i4

i5

i6

i7

Candidates = {i6}
Final Order = i1, i2, i5, i3, i4, i6

Choose i6 since it satisfies P1, P2 and P3

CCMP2 Instruction scheduling May 19, 2018 28 / 57

Applying scheduling algorithm to the example

i1 : lw $1,0($10) i4 : sw $3,12($10) i7 : sw $3,16($10)

i2 : lw $2,4($10) i5 : lw $4,8($10)

i3 : add $3,$1,$2 i6 : add $3,$1,$4

i1

i2

i3

i4

i5

i6

i7

Candidates = {i6}
Final Order = i1, i2, i5, i3, i4, i6

Choose i6 since it satisfies P1, P2 and P3

CCMP2 Instruction scheduling May 19, 2018 28 / 57

Applying scheduling algorithm to the example

i1 : lw $1,0($10) i4 : sw $3,12($10) i7 : sw $3,16($10)

i2 : lw $2,4($10) i5 : lw $4,8($10)

i3 : add $3,$1,$2 i6 : add $3,$1,$4

i1

i2

i3

i4

i5

i6

i7

Candidates = {i7}
Final Order = i1, i2, i5, i3, i4, i6

, i7

Choose i7 since it satisfies P1, P2 and P3

CCMP2 Instruction scheduling May 19, 2018 29 / 57

Applying scheduling algorithm to the example

i1 : lw $1,0($10) i4 : sw $3,12($10) i7 : sw $3,16($10)

i2 : lw $2,4($10) i5 : lw $4,8($10)

i3 : add $3,$1,$2 i6 : add $3,$1,$4

i1

i2

i3

i4

i5

i6

i7

Candidates = {i7}
Final Order = i1, i2, i5, i3, i4, i6

, i7

Choose i7 since it satisfies P1, P2 and P3

CCMP2 Instruction scheduling May 19, 2018 29 / 57

Applying scheduling algorithm to the example

i1 : lw $1,0($10) i4 : sw $3,12($10) i7 : sw $3,16($10)

i2 : lw $2,4($10) i5 : lw $4,8($10)

i3 : add $3,$1,$2 i6 : add $3,$1,$4

i1

i2

i3

i4

i5

i6

i7

Candidates = {i7}
Final Order = i1, i2, i5, i3, i4, i6, i7

Choose i7 since it satisfies P1, P2 and P3

CCMP2 Instruction scheduling May 19, 2018 29 / 57

Applying scheduling algorithm to the example

i1 : lw $1,0($10) i4 : sw $3,12($10) i7 : sw $3,16($10)

i2 : lw $2,4($10) i5 : lw $4,8($10)

i3 : add $3,$1,$2 i6 : add $3,$1,$4

i1

i2

i3

i4

i5

i6

i7

Candidates = {i7}
Final Order = i1, i2, i5, i3, i4, i6, i7

Choose i7 since it satisfies P1, P2 and P3

CCMP2 Instruction scheduling May 19, 2018 29 / 57

Applying scheduling algorithm to the example

i1 : lw $1,0($10) i4 : sw $3,12($10) i7 : sw $3,16($10)

i2 : lw $2,4($10) i5 : lw $4,8($10)

i3 : add $3,$1,$2 i6 : add $3,$1,$4

Final Order = i1, i2, i5, i3, i4, i6, i7

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11

i1 if id ex me wb
i2 if id ex me wb
i5 if id ex me wb
i3 if id ex me wb
i4 if id ex me wb
i6 if id ex me wb
i7 if id ex me wb

With scheduling: still 2 dependencies but 0 stalls and 11 cycles!

CCMP2 Instruction scheduling May 19, 2018 30 / 57

Applying scheduling algorithm to the example

i1 : lw $1,0($10) i4 : sw $3,12($10) i7 : sw $3,16($10)

i2 : lw $2,4($10) i5 : lw $4,8($10)

i3 : add $3,$1,$2 i6 : add $3,$1,$4

Final Order = i1, i2, i5, i3, i4, i6, i7

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11

i1 if id ex me wb
i2 if id ex me wb
i5 if id ex me wb
i3 if id ex me wb
i4 if id ex me wb
i6 if id ex me wb
i7 if id ex me wb

With scheduling: still 2 dependencies but 0 stalls and 11 cycles!

CCMP2 Instruction scheduling May 19, 2018 30 / 57

A word on scheduling strategies

Sometimes we cannot avoid some stalls

Computing the critical path can be smarter:
I Rather than attributing 1 as weight to every instruction, we can adjust

according to the real time of executing the instruction
I We can take advantages of the number of successors
I ... many yet-to-be-define heuristics!

Computing the DAG of dependencies can be done in O(n2) by
scanning backwards through the basic block and adding edges as
dependencies arise

CCMP2 Instruction scheduling May 19, 2018 31 / 57

A word on performances

We can statically compute instructions per cycle IPC=nb instructions
nb cycles , to

evaluate 2 possible scheduling.

In the previous example:

without scheduling IPC= 7
13 = 0.53

with scheduling IPC= 7
11 = 0.63 (better!)

We can also statically compute cycle per instructions: CPI = 1
IPC .

The CPI lower bound is
∑

α×β
nb instructions , avec α is the number of instructions

for a given instruction type and β the associated cost.

CCMP2 Instruction scheduling May 19, 2018 32 / 57

Can we do better?

Consider the following code (representing a basic block):

i1: Loop: lw $t0, 0($s1) # t0=array element
i2: addu $t0, $t0, $s2 # add scalar in s2
i3: sw $t0, 0($s1) # store result
i4: addi $s1, $s1,-4 # decrement pointer
i5: bne $s1, $0, Loop # branch s1!=0

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16
i1 if id ex me wb
i2 if id ex me wb
i3 if id ex me wb
i4 if id ex me wb
i5 if id ex me wb

16 cycles for 5 instructions that are all dependent!
IPC = 0.31

CCMP2 Instruction scheduling May 19, 2018 33 / 57

Can we do better?

Consider the following code (representing a basic block):

i1: Loop: lw $t0, 0($s1) # t0=array element
i2: addu $t0, $t0, $s2 # add scalar in s2
i3: sw $t0, 0($s1) # store result
i4: addi $s1, $s1,-4 # decrement pointer
i5: bne $s1, $0, Loop # branch s1!=0

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16
i1 if id ex me wb
i2 if id ex me wb
i3 if id ex me wb
i4 if id ex me wb
i5 if id ex me wb

16 cycles for 5 instructions that are all dependent!
IPC = 0.31

CCMP2 Instruction scheduling May 19, 2018 33 / 57

Can we do better?

Consider the following code (representing a basic block):

i1: Loop: lw $t0, 0($s1) # t0=array element
i2: addu $t0, $t0, $s2 # add scalar in s2
i3: sw $t0, 0($s1) # store result
i4: addi $s1, $s1,-4 # decrement pointer
i5: bne $s1, $0, Loop # branch s1!=0

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16
i1 if id ex me wb
i2 if id ex me wb
i3 if id ex me wb
i4 if id ex me wb
i5 if id ex me wb

16 cycles for 5 instructions that are all dependent!
IPC = 0.31

CCMP2 Instruction scheduling May 19, 2018 33 / 57

Loop Unrolling

Replicate loop body to expose more parallelism

Reduces loop-control overhead

At high level, it can be seen as following:

Without Loop Unrolling With Loop Unrolling

int i; int i;
for (i = 0; i < 100; ++i) for (i = 0; i < 100; i+=5)

tab[i] = tab[i] +42; tab[i] = tab[i] +42;
tab[i+1] = tab[i+1] +42;
tab[i+2] = tab[i+2] +42;
tab[i+3] = tab[i+3] +42;
tab[i+4] = tab[i+4] +42;

Special care must be taken for pre and post loops operations (as well as
intra-loop dependencies)

CCMP2 Instruction scheduling May 19, 2018 34 / 57

Loop Unrolling

Replicate loop body to expose more parallelism

Reduces loop-control overhead

At high level, it can be seen as following:

Without Loop Unrolling With Loop Unrolling

int i; int i;
for (i = 0; i < 100; ++i) for (i = 0; i < 100; i+=5)

tab[i] = tab[i] +42; tab[i] = tab[i] +42;
tab[i+1] = tab[i+1] +42;
tab[i+2] = tab[i+2] +42;
tab[i+3] = tab[i+3] +42;
tab[i+4] = tab[i+4] +42;

Special care must be taken for pre and post loops operations (as well as
intra-loop dependencies)

CCMP2 Instruction scheduling May 19, 2018 34 / 57

Loop Unrolling

Replicate loop body to expose more parallelism

Reduces loop-control overhead

At high level, it can be seen as following:

Without Loop Unrolling With Loop Unrolling

int i; int i;
for (i = 0; i < 100; ++i) for (i = 0; i < 100; i+=5)

tab[i] = tab[i] +42; tab[i] = tab[i] +42;
tab[i+1] = tab[i+1] +42;
tab[i+2] = tab[i+2] +42;
tab[i+3] = tab[i+3] +42;
tab[i+4] = tab[i+4] +42;

Special care must be taken for pre and post loops operations (as well as
intra-loop dependencies)

CCMP2 Instruction scheduling May 19, 2018 34 / 57

Loop Unrolling – back to the example

i1: Loop: lw $t0, 0($s1) # t0=array element
i2: addu $t0, $t0, $s2 # add scalar in s2
i3: sw $t0, 0($s1) # store result
i4: addi $s1, $s1,-4 # decrement pointer
i5: bne $s1, $0, Loop # branch s1!=0
i6: Loop: lw $t0, 0($s1) # t0=array element
i7: addu $t0, $t0, $s2 # add scalar in s2
i8: sw $t0, 0($s1) # store result
i9: addi $s1, $s1,-4 # decrement pointer
i10: bne $s1, $0, Loop # branch s1!=0
i11: Loop: lw $t0, 0($s1) # t0=array element
i12: addu $t0, $t0, $s2 # add scalar in s2
i13: sw $t0, 0($s1) # store result
i14: addi $s1, $s1,-4 # decrement pointer
i15: bne $s1, $0, Loop # branch s1!=0

First duplicate N times the the body of the loop!

CCMP2 Instruction scheduling May 19, 2018 35 / 57

Loop Unrolling – back to the example

i1: Loop: lw $t0, 0($s1) # t0=array element
i2: addu $t0, $t0, $s2 # add scalar in s2
i3: sw $t0, 0($s1) # store result
i4: addi $s1, $s1,-4 # decrement pointer
i6: lw $t0, 0($s1) # t0=array element
i7: addu $t0, $t0, $s2 # add scalar in s2
i8: sw $t0, 0($s1) # store result
i9: addi $s1, $s1,-4 # decrement pointer
i11: lw $t0, 0($s1) # t0=array element
i12: addu $t0, $t0, $s2 # add scalar in s2
i13: sw $t0, 0($s1) # store result
i14: addi $s1, $s1,-4 # decrement pointer
i15: bne $s1, $0, Loop # branch s1!=0

Remove redundant labels and jump
(by supposing that we are able to do it!)

CCMP2 Instruction scheduling May 19, 2018 36 / 57

Loop Unrolling – back to the example

i1: Loop: lw $t0, 0($s1) # t0=array element
i2: addu $t0, $t0, $s2 # add scalar in s2
i3: sw $t0, 0($s1) # store result
i4: addi $s1, $s1,-4 # decrement pointer
i6: lw $t1, 0($s1) # t0=array element
i7: addu $t1, $t1, $s2 # add scalar in s2
i8: sw $t1, 0($s1) # store result
i9: addi $s1, $s1,-4 # decrement pointer
i11: lw $t2, 0($s1) # t0=array element
i12: addu $t2, $t2, $s2 # add scalar in s2
i13: sw $t2, 0($s1) # store result
i14: addi $s1, $s1,-4 # decrement pointer
i15: bne $s1, $0, Loop # branch s1!=0

Use other temporaries name when possible!

CCMP2 Instruction scheduling May 19, 2018 37 / 57

Loop Unrolling – back to the example

i4: Loop: addi $s1, $s1,-12 # decrement pointer
i1: lw $t0, 0($s1) # t0=array element
i2: addu $t0, $t0, $s2 # add scalar in s2
i3: sw $t0, 0($s1) # store result
i6: lw $t1, 4($s1) # t0=array element
i7: addu $t1, $t1, $s2 # add scalar in s2
i8: sw $t1, 4($s1) # store result
i11: lw $t2, 8($s1) # t0=array element
i12: addu $t2, $t2, $s2 # add scalar in s2
i13: sw $t2, 8($s1) # store result
i15: bne $s1, $0, Loop # branch s1!=0

Grab redundant operation and merge them carefully!

CCMP2 Instruction scheduling May 19, 2018 38 / 57

Loop Unrolling – back to the example

i1: Loop: addi $s1, $s1,-12 # decrement pointer for N=3
i2: lw $t0, 0($s1) # t0=array element
i3: lw $t1, 4($s1) # t1=array element
i4: lw $t2, 8($s1) # t2=array element
i5: addu $t0, $t0, $s2 # add scalar in s2
i6: addu $t1, $t1, $s2 # add scalar in s2
i7: addu $t2, $t2, $s2 # add scalar in s2
i8: sw $t0, 0($s1) # store result
i9: sw $t1, 4($s1) # store result
i10: sw $t2, 8($s1) # store result
i11: bne $s1, $0, Loop # branch s1!=0

Schedule the instructions and renumber them (and update comments)!

CCMP2 Instruction scheduling May 19, 2018 39 / 57

Pros & Cons

We avoid a lot of conditional jumps (and many stall hence)

We require 19 cycles for 11 instructions: IPC=0.57
(a lot better than the previous 0.31)

This trick allows to have more independent instructions to insert, and
thus, less stalls!

But we have now a prologue and an epilogue: i.e., two more basic
blocks

Require more temporaries: register allocation will be harder!

Try it by yourself in gcc -funroll-loops

CCMP2 Instruction scheduling May 19, 2018 40 / 57

A very last word on Branch Hazards 1/2

Conditional jumps often introduce delays since we cannot pre-fetch
instrcutions

I Branch Outcome and Branch Target Address are ready at the end of
the EX stage (3th stage)

I Conditional branches are solved when PC is updated at the end of the
ME stage (4th stage)

Can we avoid them?

We only know inext at cycle 5!
c1 c2 c3 c4 c5 c6 c7 c8 c9

bne $1,$2, loop if id ex me wb
nop if id ex me wb
nop if id ex me wb
nop if id ex me wb
inext if id ex me wb

CCMP2 Instruction scheduling May 19, 2018 41 / 57

A very last word on Branch Hazards 2/2

X delayed slot: the X instructions after a branch are systematically
executed

The original SPARC and MIPS processors each used a single branch
delay slot to eliminate single-cycle stalls after branches

We need branch prediction... but nowadays, most of processors do it
for us (and use slt...)!

Some architectures have bypass between stages to avoid stalls

Avoid as possible floating points and jumps!

”Do you program in mips?” she asked. ”nop”, he said.

CCMP2 Instruction scheduling May 19, 2018 42 / 57

A very last word on Branch Hazards 2/2

X delayed slot: the X instructions after a branch are systematically
executed

The original SPARC and MIPS processors each used a single branch
delay slot to eliminate single-cycle stalls after branches

We need branch prediction... but nowadays, most of processors do it
for us (and use slt...)!

Some architectures have bypass between stages to avoid stalls

Avoid as possible floating points and jumps!

”Do you program in mips?” she asked. ”nop”, he said.

CCMP2 Instruction scheduling May 19, 2018 42 / 57

Stalls due to caches

When the processor processor needs to access a data:

If data is in cache: with a cost of 3 cycles

Otherwise: with a cost of 100 cycles

Cache Hit

CPU

word transfert

Cache

Memory

Cache Miss

CPU

word transfert

block transfert

Cache

Memory

CCMP2 Instruction scheduling May 19, 2018 43 / 57

Stalls due to caches

When the processor processor needs to access a data:

If data is in cache: with a cost of 3 cycles

Otherwise: with a cost of 100 cycles

Cache Hit

CPU

word transfert

Cache

Memory

Cache Miss

CPU

word transfert

block transfert

Cache

Memory

CCMP2 Instruction scheduling May 19, 2018 43 / 57

Stalls due to caches

When the processor processor needs to access a data:

If data is in cache: with a cost of 3 cycles

Otherwise: with a cost of 100 cycles

Cache Hit

CPU

word transfert

Cache

Memory

Cache Miss

CPU

word transfert

block transfert

Cache

Memory

CCMP2 Instruction scheduling May 19, 2018 43 / 57

Cache Fundamentals 1/2

Memory

Cache

0x1 0x5 0x9 0x13 0x17 0x21

Access to adress 0x1, 4 words are fetchedAccess to adress 0x5, 4 words are fetchedAccess to adress 0x9, 4 words are fetchedAccess to adress 0x13, 4 words are fetchedAccess to adress 0x17, 4 words are fetched

First line of cache is replaced!

Access to adress 0x21, 4 words are fetched

Second line of cache is replaced!

CCMP2 Instruction scheduling May 19, 2018 44 / 57

Cache Fundamentals 1/2

Memory

Cache

0x1 0x5 0x9 0x13 0x17 0x21

Access to adress 0x1, 4 words are fetched

Access to adress 0x5, 4 words are fetchedAccess to adress 0x9, 4 words are fetchedAccess to adress 0x13, 4 words are fetchedAccess to adress 0x17, 4 words are fetched

First line of cache is replaced!

Access to adress 0x21, 4 words are fetched

Second line of cache is replaced!

CCMP2 Instruction scheduling May 19, 2018 44 / 57

Cache Fundamentals 1/2

Memory

Cache

0x1 0x5 0x9 0x13 0x17 0x21

Access to adress 0x1, 4 words are fetched

Access to adress 0x5, 4 words are fetched

Access to adress 0x9, 4 words are fetchedAccess to adress 0x13, 4 words are fetchedAccess to adress 0x17, 4 words are fetched

First line of cache is replaced!

Access to adress 0x21, 4 words are fetched

Second line of cache is replaced!

CCMP2 Instruction scheduling May 19, 2018 44 / 57

Cache Fundamentals 1/2

Memory

Cache

0x1 0x5 0x9 0x13 0x17 0x21

Access to adress 0x1, 4 words are fetchedAccess to adress 0x5, 4 words are fetched

Access to adress 0x9, 4 words are fetched

Access to adress 0x13, 4 words are fetchedAccess to adress 0x17, 4 words are fetched

First line of cache is replaced!

Access to adress 0x21, 4 words are fetched

Second line of cache is replaced!

CCMP2 Instruction scheduling May 19, 2018 44 / 57

Cache Fundamentals 1/2

Memory

Cache

0x1 0x5 0x9 0x13 0x17 0x21

Access to adress 0x1, 4 words are fetchedAccess to adress 0x5, 4 words are fetchedAccess to adress 0x9, 4 words are fetched

Access to adress 0x13, 4 words are fetched

Access to adress 0x17, 4 words are fetched

First line of cache is replaced!

Access to adress 0x21, 4 words are fetched

Second line of cache is replaced!

CCMP2 Instruction scheduling May 19, 2018 44 / 57

Cache Fundamentals 1/2

Memory

Cache

0x1 0x5 0x9 0x13 0x17 0x21

Access to adress 0x1, 4 words are fetchedAccess to adress 0x5, 4 words are fetchedAccess to adress 0x9, 4 words are fetchedAccess to adress 0x13, 4 words are fetched

Access to adress 0x17, 4 words are fetched

First line of cache is replaced!

Access to adress 0x21, 4 words are fetched

Second line of cache is replaced!

CCMP2 Instruction scheduling May 19, 2018 44 / 57

Cache Fundamentals 1/2

Memory

Cache

0x1 0x5 0x9 0x13 0x17 0x21

Access to adress 0x1, 4 words are fetchedAccess to adress 0x5, 4 words are fetchedAccess to adress 0x9, 4 words are fetchedAccess to adress 0x13, 4 words are fetchedAccess to adress 0x17, 4 words are fetched

First line of cache is replaced!

Access to adress 0x21, 4 words are fetched

Second line of cache is replaced!

CCMP2 Instruction scheduling May 19, 2018 44 / 57

Cache Fundamentals 1/2

Many strategies to put data into the cache:

Direct Mapping:
I The address is decomposed in 3 parts: tag (8b), line (22b), and

word(2b)
I Each block of main memory maps to only one cache line, i.e.

block-size = cache-line-size
I Simple, Inexpensive, and fixed location for given block

Associative Mapping:
I A main memory block can load into any line of cache
I Memory address is interpreted as tag and word
I Tag uniquely identifies block of memory
I Each block of main memory maps to only one cache line, i.e.

block-size = cache-line-size
I Complex, Expensive, and no-fixed location for given block

CCMP2 Instruction scheduling May 19, 2018 45 / 57

Prefetching

Fetch the data before it is needed (i.e. pre-fetch) by the program

Eliminate cache misses

Involves predicting which address will be needed in the future (as for
branch prediction)

In contrast to branch prediction:
I incorrect prefetched data will simply not be used
I there is no need for state recovery

CCMP2 Instruction scheduling May 19, 2018 46 / 57

Locality

Locality is the principle that future memory accesses are near past
accesses

Memories take advantage of two types of locality
I Temporal locality, i.e. near in time: we will often access the same data

again very soon

I Spatial locality, i.e. near in space/distance: our next access is often
very close to our last access (or recent accesses)

Some Instruction Set Architecture (ISA) allows to pre-fetch some data:
i.e., Humans or compilers has to insert (take advantage) of these
instructions

CCMP2 Instruction scheduling May 19, 2018 47 / 57

Locality

Locality is the principle that future memory accesses are near past
accesses

Memories take advantage of two types of locality
I Temporal locality, i.e. near in time: we will often access the same data

again very soon

I Spatial locality, i.e. near in space/distance: our next access is often
very close to our last access (or recent accesses)

Some Instruction Set Architecture (ISA) allows to pre-fetch some data:
i.e., Humans or compilers has to insert (take advantage) of these
instructions

CCMP2 Instruction scheduling May 19, 2018 47 / 57

Loops optimisations

We have already seen loops-unrolling to avoid stalls inside of the
processor. Other techniques exist to avoid stalls due to cache:

Loop Fission

Loop interchanging

Tabular Grouping

Loop blocking

Loop reversal

Loop tiling

. . .

CCMP2 Instruction scheduling May 19, 2018 48 / 57

Loop Fission 1/2

Consider the following code, and direct mapping strategy:

int A[1024]; int B[1024]; int C[1024];
for (int i = 1; i<1024; ++i) {

A[i] = B[i];
C[i] = C[i-1] + 1;
}

Fetch A[i], A[i + 1], A[i + 2] and A[i + 3]Fetch B[i], B[i + 1], B[i + 2] and B[i + 3]Fetch C[i], C[i + 1], C[i + 2] and C[i + 3]Fetch C[i − 1] will probably conflict

Hopefully A[i], B[i] and C[i] will not conflict in the cache

but ... C[i-1] will probably!

CCMP2 Instruction scheduling May 19, 2018 49 / 57

Loop Fission 1/2

Consider the following code, and direct mapping strategy:

int A[1024]; int B[1024]; int C[1024];
for (int i = 1; i<1024; ++i) {

A[i] = B[i];
C[i] = C[i-1] + 1;
}

Fetch A[i], A[i + 1], A[i + 2] and A[i + 3]

Fetch B[i], B[i + 1], B[i + 2] and B[i + 3]Fetch C[i], C[i + 1], C[i + 2] and C[i + 3]Fetch C[i − 1] will probably conflict

Hopefully A[i], B[i] and C[i] will not conflict in the cache

but ... C[i-1] will probably!

CCMP2 Instruction scheduling May 19, 2018 49 / 57

Loop Fission 1/2

Consider the following code, and direct mapping strategy:

int A[1024]; int B[1024]; int C[1024];
for (int i = 1; i<1024; ++i) {

A[i] = B[i];
C[i] = C[i-1] + 1;
}

Fetch A[i], A[i + 1], A[i + 2] and A[i + 3]

Fetch B[i], B[i + 1], B[i + 2] and B[i + 3]

Fetch C[i], C[i + 1], C[i + 2] and C[i + 3]Fetch C[i − 1] will probably conflict

Hopefully A[i], B[i] and C[i] will not conflict in the cache

but ... C[i-1] will probably!

CCMP2 Instruction scheduling May 19, 2018 49 / 57

Loop Fission 1/2

Consider the following code, and direct mapping strategy:

int A[1024]; int B[1024]; int C[1024];
for (int i = 1; i<1024; ++i) {

A[i] = B[i];
C[i] = C[i-1] + 1;
}

Fetch A[i], A[i + 1], A[i + 2] and A[i + 3]Fetch B[i], B[i + 1], B[i + 2] and B[i + 3]

Fetch C[i], C[i + 1], C[i + 2] and C[i + 3]

Fetch C[i − 1] will probably conflict

Hopefully A[i], B[i] and C[i] will not conflict in the cache

but ... C[i-1] will probably!

CCMP2 Instruction scheduling May 19, 2018 49 / 57

Loop Fission 1/2

Consider the following code, and direct mapping strategy:

int A[1024]; int B[1024]; int C[1024];
for (int i = 1; i<1024; ++i) {

A[i] = B[i];
C[i] = C[i-1] + 1;
}

Fetch A[i], A[i + 1], A[i + 2] and A[i + 3]Fetch B[i], B[i + 1], B[i + 2] and B[i + 3]Fetch C[i], C[i + 1], C[i + 2] and C[i + 3]

Fetch C[i − 1] will probably conflict

Hopefully A[i], B[i] and C[i] will not conflict in the cache

but ... C[i-1] will probably!

CCMP2 Instruction scheduling May 19, 2018 49 / 57

Loop Fission 2/2

Solution

Divide the loop into two:

Less pressure on cache

We can now insert padding to avoid conflicts

int A[1024]; padding[xx]; int B[1024]; int C[1024];
for (int i = 1; i<1024; ++i)

A[i] = B[i];
for (int i = 1; i<1024; ++i)

C[i] = C[i-1] + 1;

Try it by yourself in gcc -ftree-loop-distribution

CCMP2 Instruction scheduling May 19, 2018 50 / 57

Loop interchanging 1/2

Consider the following code, and direct mapping cache:

int A[1024][1024];
for (int j = 1; j<1024; ++j)

for (int i = 1; i<1024; ++i)
A[j][i] = A[j][i] * 42;

Fetch A[j][i], A[j + 1][i], A[j + 2][i], and A[j + 3][i]Fetch A[j + 1][i], A[j + 2][i], A[j + 3][i], and A[j + 4][i]

In Fortran, the elements of an array are stored in memory contiguously by
column, and the original loop iterates over rows, potentially creating at

each access a cache miss
A B C
D E F

is stored A D B E C F

CCMP2 Instruction scheduling May 19, 2018 51 / 57

Loop interchanging 1/2

Consider the following code, and direct mapping cache:

int A[1024][1024];
for (int j = 1; j<1024; ++j)

for (int i = 1; i<1024; ++i)
A[j][i] = A[j][i] * 42;

Fetch A[j][i], A[j + 1][i], A[j + 2][i], and A[j + 3][i]

Fetch A[j + 1][i], A[j + 2][i], A[j + 3][i], and A[j + 4][i]

In Fortran, the elements of an array are stored in memory contiguously by
column, and the original loop iterates over rows, potentially creating at

each access a cache miss
A B C
D E F

is stored A D B E C F

CCMP2 Instruction scheduling May 19, 2018 51 / 57

Loop interchanging 1/2

Consider the following code, and direct mapping cache:

int A[1024][1024];
for (int j = 1; j<1024; ++j)

for (int i = 1; i<1024; ++i)
A[j][i] = A[j][i] * 42;

Fetch A[j][i], A[j + 1][i], A[j + 2][i], and A[j + 3][i]

Fetch A[j + 1][i], A[j + 2][i], A[j + 3][i], and A[j + 4][i]

In Fortran, the elements of an array are stored in memory contiguously by
column, and the original loop iterates over rows, potentially creating at

each access a cache miss
A B C
D E F

is stored A D B E C F

CCMP2 Instruction scheduling May 19, 2018 51 / 57

Loop interchanging 2/2

Solution

This transformation switches the positions of one loop that is tightly
nested within another loop.

int A[1024][1024];
for (int i = 1; i<1024; ++i)

for (int j = 1; j<1024; ++j)
A[j][i] = A[j][i] * 42;

Legal if the outermost loop does not carry any data dependence
Try it by yourself in gcc -floop-interchange

CCMP2 Instruction scheduling May 19, 2018 52 / 57

Tabular Grouping 1/2

Consider the following code, and direct mapping cache:

int A[1024]; int B[1024];
for (int j = 1; j<1024; ++j)

A[j] = B[j] * 42;

Fetch B[i], B[i + 1], B[i + 2] and B[i + 3]Fetch A[i], A[i + 1], A[i + 2] and A[i + 3]

Dynamic allocation does not allow padding. In the worst case, two miss
per iterations

CCMP2 Instruction scheduling May 19, 2018 53 / 57

Tabular Grouping 1/2

Consider the following code, and direct mapping cache:

int A[1024]; int B[1024];
for (int j = 1; j<1024; ++j)

A[j] = B[j] * 42;

Fetch B[i], B[i + 1], B[i + 2] and B[i + 3]

Fetch A[i], A[i + 1], A[i + 2] and A[i + 3]

Dynamic allocation does not allow padding. In the worst case, two miss
per iterations

CCMP2 Instruction scheduling May 19, 2018 53 / 57

Tabular Grouping 1/2

Consider the following code, and direct mapping cache:

int A[1024]; int B[1024];
for (int j = 1; j<1024; ++j)

A[j] = B[j] * 42;

Fetch B[i], B[i + 1], B[i + 2] and B[i + 3]

Fetch A[i], A[i + 1], A[i + 2] and A[i + 3]

Dynamic allocation does not allow padding. In the worst case, two miss
per iterations

CCMP2 Instruction scheduling May 19, 2018 53 / 57

Tabular Grouping 1/2

Consider the following code, and direct mapping cache:

int A[1024]; int B[1024];
for (int j = 1; j<1024; ++j)

A[j] = B[j] * 42;

Fetch B[i], B[i + 1], B[i + 2] and B[i + 3]

Fetch A[i], A[i + 1], A[i + 2] and A[i + 3]

Dynamic allocation does not allow padding. In the worst case, two miss
per iterations

CCMP2 Instruction scheduling May 19, 2018 53 / 57

Tabular Grouping 2/2

Solution

Group the two tabular into one

struct twoval{int A; int B};
struct twoval R[1024];
for (int j = 1; j<1024; ++j)

R[j].A = R[j].B * 42;

Avoid a lot of caches miss!
Very hard for compiler to detect such cases

CCMP2 Instruction scheduling May 19, 2018 54 / 57

Loop Blocking

Consider the code below.

int A[1024][1024]; int B[1024][1024];
for (int i = 1; i<1024; ++i)

for (int j = 1; j<1024; ++j)
A[i][j] = B[i][j];

If A and B are aligned we may encounter problems.

Similar problems occur when processing images: A[i][j] = B[i-1][j-1] +
B[i-1][j] + B[i-1][j+1] + B[i][j-1] + B[i][j] + B[i][j+1] + B[i-1][j+1] +
B[i+1][j] + B[i+1][j+1] ;

In this latter case, padding is complicated...

CCMP2 Instruction scheduling May 19, 2018 55 / 57

Loop Blocking

Solution

Try to work with data that fit in memory!

int A[1024][1024]; int B[1024][1024];
for (int i = 1; i<1024; i += B)

for (int j = 1; j<1024; j += B)
for (int ii = 1; ii<min(1024, ii+B-1); ii += B)

for (int jj = 1; jj< min(1024, ii+B-1); jj += B)
A[i][j] = B[i][j];

CCMP2 Instruction scheduling May 19, 2018 56 / 57

Summary

stalls in the processor can come from many reasons
I from data dependencies between instructions
I from instruction dependencies
I from cache and memory

modern compiler hardly try to reduce them
I by using Instruction Level Parallelism (i.e, to have a lot of independent

instructions)
I all these optimization must occur before register allocation (which is

the final step)
I When writing a compiler, you must know the target processor by heart!

Caches can be shared between many processors!

CCMP2 Instruction scheduling May 19, 2018 57 / 57

	Dependencies
	Dependency graph
	Instruction Pipeline
	Minimizing stalls
	Loops unrolling
	Managing caches

