
Introduction to the Tiger Project
and Tigrou project

Akim Demaille Étienne Renault Roland Levillain
first.last@lrde.epita.fr

EPITA � École Pour l'Informatique et les Techniques Avancées

February 3, 2020



Context and Motivation

The Needs

20 years ago, EPITA asked for a long and challenging project.

Should virtually be a potpourri of every subject from computer science
courses taught in third year.

A (Miraculous) Solution

A compiler construction project.

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 2 / 37



Context and Motivation

The Needs

20 years ago, EPITA asked for a long and challenging project.

Should virtually be a potpourri of every subject from computer science
courses taught in third year.

A (Miraculous) Solution

A compiler construction project.

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 2 / 37



Goals

Aim

Compiler construction as a by-product

Complete Project
Speci�cations, implementation, documentation, testing,
distribution.

Several iterations
6 (optionally up to 9) steps, for 3 (resp. up to 6) months.

Algorithmically challenging
Applied use of well known data structures and algorithms.

Team Management
Project conducted in group of four students.

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 3 / 37



Goals

Aim

Compiler construction as a by-product

Complete Project
Speci�cations, implementation, documentation, testing,
distribution.

Several iterations
6 (optionally up to 9) steps, for 3 (resp. up to 6) months.

Algorithmically challenging
Applied use of well known data structures and algorithms.

Team Management
Project conducted in group of four students.

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 3 / 37



Goals

Aim

Compiler construction as a by-product

Complete Project
Speci�cations, implementation, documentation, testing,
distribution.

Several iterations
6 (optionally up to 9) steps, for 3 (resp. up to 6) months.

Algorithmically challenging
Applied use of well known data structures and algorithms.

Team Management
Project conducted in group of four students.

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 3 / 37



Goals

Aim

Compiler construction as a by-product

Complete Project
Speci�cations, implementation, documentation, testing,
distribution.

Several iterations
6 (optionally up to 9) steps, for 3 (resp. up to 6) months.

Algorithmically challenging
Applied use of well known data structures and algorithms.

Team Management
Project conducted in group of four students.

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 3 / 37



Goals

Aim

Compiler construction as a by-product

Complete Project
Speci�cations, implementation, documentation, testing,
distribution.

Several iterations
6 (optionally up to 9) steps, for 3 (resp. up to 6) months.

Algorithmically challenging
Applied use of well known data structures and algorithms.

Team Management
Project conducted in group of four students.

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 3 / 37



Goals (cont.)

C++

Expressive power; uses both low- and high-level constructs;
industry standard.

Object-Oriented (OO) Design and Design Pattern (DP)
Practice common OO idioms, apply DPs.

Development Tools
Autotools, Doxygen, Flex, Bison, GDB, Valgrind, Git, etc.

Understanding Computers
Compiler and languages are tightly related to computer
architecture.

English
Everything is to be written in English (code, documentation,
tests).

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 4 / 37



Goals (cont.)

C++

Expressive power; uses both low- and high-level constructs;
industry standard.

Object-Oriented (OO) Design and Design Pattern (DP)
Practice common OO idioms, apply DPs.

Development Tools
Autotools, Doxygen, Flex, Bison, GDB, Valgrind, Git, etc.

Understanding Computers
Compiler and languages are tightly related to computer
architecture.

English
Everything is to be written in English (code, documentation,
tests).

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 4 / 37



Goals (cont.)

C++

Expressive power; uses both low- and high-level constructs;
industry standard.

Object-Oriented (OO) Design and Design Pattern (DP)
Practice common OO idioms, apply DPs.

Development Tools
Autotools, Doxygen, Flex, Bison, GDB, Valgrind, Git, etc.

Understanding Computers
Compiler and languages are tightly related to computer
architecture.

English
Everything is to be written in English (code, documentation,
tests).

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 4 / 37



Goals (cont.)

C++

Expressive power; uses both low- and high-level constructs;
industry standard.

Object-Oriented (OO) Design and Design Pattern (DP)
Practice common OO idioms, apply DPs.

Development Tools
Autotools, Doxygen, Flex, Bison, GDB, Valgrind, Git, etc.

Understanding Computers
Compiler and languages are tightly related to computer
architecture.

English
Everything is to be written in English (code, documentation,
tests).

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 4 / 37



Goals (cont.)

C++

Expressive power; uses both low- and high-level constructs;
industry standard.

Object-Oriented (OO) Design and Design Pattern (DP)
Practice common OO idioms, apply DPs.

Development Tools
Autotools, Doxygen, Flex, Bison, GDB, Valgrind, Git, etc.

Understanding Computers
Compiler and languages are tightly related to computer
architecture.

English
Everything is to be written in English (code, documentation,
tests).

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 4 / 37



Non Goal

Writing a Compiler Paradoxically!
Well, at least considered a secondary issue.

Why?
The vast majority of [Computer Science] students are unlikely to
ever design a compiler [Debray, 2002].

But... Students interested in compiler construction should be given
the opportunity to work on challenging, optional assignments.

But... Since 2002, graphics processors units have raised (GPU). A lot
of work has to be done to targer such GPU.

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 5 / 37



Non Goal

Writing a Compiler Paradoxically!
Well, at least considered a secondary issue.

Why?
The vast majority of [Computer Science] students are unlikely to
ever design a compiler [Debray, 2002].

But... Students interested in compiler construction should be given
the opportunity to work on challenging, optional assignments.

But... Since 2002, graphics processors units have raised (GPU). A lot
of work has to be done to targer such GPU.

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 5 / 37



Non Goal

Writing a Compiler Paradoxically!
Well, at least considered a secondary issue.

Why?
The vast majority of [Computer Science] students are unlikely to
ever design a compiler [Debray, 2002].

But... Students interested in compiler construction should be given
the opportunity to work on challenging, optional assignments.

But... Since 2002, graphics processors units have raised (GPU). A lot
of work has to be done to targer such GPU.

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 5 / 37



Non Goal

Writing a Compiler Paradoxically!
Well, at least considered a secondary issue.

Why?
The vast majority of [Computer Science] students are unlikely to
ever design a compiler [Debray, 2002].

But... Students interested in compiler construction should be given
the opportunity to work on challenging, optional assignments.

But... Since 2002, graphics processors units have raised (GPU). A lot
of work has to be done to targer such GPU.

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 5 / 37



Non Goal

Writing a Compiler Paradoxically!
Well, at least considered a secondary issue.

Why?
The vast majority of [Computer Science] students are unlikely to
ever design a compiler [Debray, 2002].

But... Students interested in compiler construction should be given
the opportunity to work on challenging, optional assignments.

But... Since 2002, graphics processors units have raised (GPU). A lot
of work has to be done to targer such GPU.

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 5 / 37



Non Goal

Writing a Compiler Paradoxically!
Well, at least considered a secondary issue.

Why?
The vast majority of [Computer Science] students are unlikely to
ever design a compiler [Debray, 2002].

But... Students interested in compiler construction should be given
the opportunity to work on challenging, optional assignments.

But... Since 2002, graphics processors units have raised (GPU). A lot
of work has to be done to targer such GPU.

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 5 / 37



Non Goal

Writing a Compiler Paradoxically!
Well, at least considered a secondary issue.

Why?
The vast majority of [Computer Science] students are unlikely to
ever design a compiler [Debray, 2002].

But... Students interested in compiler construction should be given
the opportunity to work on challenging, optional assignments.

But... Since 2002, graphics processors units have raised (GPU). A lot
of work has to be done to targer such GPU.

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 5 / 37



Non Goal

Writing a Compiler Paradoxically!
Well, at least considered a secondary issue.

Why?
The vast majority of [Computer Science] students are unlikely to
ever design a compiler [Debray, 2002].

But... Students interested in compiler construction should be given
the opportunity to work on challenging, optional assignments.

But... Since 2002, graphics processors units have raised (GPU). A lot
of work has to be done to targer such GPU.

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 5 / 37



Non Goal

Writing a Compiler Paradoxically!
Well, at least considered a secondary issue.

Why?
The vast majority of [Computer Science] students are unlikely to
ever design a compiler [Debray, 2002].

But... Students interested in compiler construction should be given
the opportunity to work on challenging, optional assignments.

But... Since 2002, graphics processors units have raised (GPU). A lot
of work has to be done to targer such GPU.

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 5 / 37



Introduction to the Tiger Project
and Tigrou project

1 Overview of the Tiger Project

2 Practical information

3 Rules of the Game

4 Vocabulary and Structure of a compiler

5 The Tiger Compiler (and Tigrou's architecture)

6 The Tiger Language

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 6 / 37



Overview of the Tiger Project

1 Overview of the Tiger Project

2 Practical information

3 Rules of the Game

4 Vocabulary and Structure of a compiler

5 The Tiger Compiler (and Tigrou's architecture)

6 The Tiger Language

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 7 / 37



A Core-Curriculum Compiler-Construction Project

Based on Andrew Appel's Tiger language and Modern Compiler
Implementation books [Appel, 1998].

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 8 / 37



A Core-Curriculum Compiler-Construction Project (cont.)

...and largely adapted [Demaille, 2005].

Compiler (to be) written in C++.

Initial Tiger language de�nition (a Pascal-descendant language,
dressed in a clean ML-like syntax).

Augmented with import statements, adjustable prelude, OO
constructs, etc.

Better de�ned (no implementation-de�ned behavior left).

More compiler modules and features than in the initial design.

In particular more tools to both help students develop and improve
their compiler and make the maintenance easier to teachers and
assistants.

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 9 / 37



A Core-Curriculum Compiler-Construction Project (cont.)

...and largely adapted [Demaille, 2005].

Compiler (to be) written in C++.

Initial Tiger language de�nition (a Pascal-descendant language,
dressed in a clean ML-like syntax).

Augmented with import statements, adjustable prelude, OO
constructs, etc.

Better de�ned (no implementation-de�ned behavior left).

More compiler modules and features than in the initial design.

In particular more tools to both help students develop and improve
their compiler and make the maintenance easier to teachers and
assistants.

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 9 / 37



A Core-Curriculum Compiler-Construction Project (cont.)

...and largely adapted [Demaille, 2005].

Compiler (to be) written in C++.

Initial Tiger language de�nition (a Pascal-descendant language,
dressed in a clean ML-like syntax).

Augmented with import statements, adjustable prelude, OO
constructs, etc.

Better de�ned (no implementation-de�ned behavior left).

More compiler modules and features than in the initial design.

In particular more tools to both help students develop and improve
their compiler and make the maintenance easier to teachers and
assistants.

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 9 / 37



A Core-Curriculum Compiler-Construction Project (cont.)

...and largely adapted [Demaille, 2005].

Compiler (to be) written in C++.

Initial Tiger language de�nition (a Pascal-descendant language,
dressed in a clean ML-like syntax).

Augmented with import statements, adjustable prelude, OO
constructs, etc.

Better de�ned (no implementation-de�ned behavior left).

More compiler modules and features than in the initial design.

In particular more tools to both help students develop and improve
their compiler and make the maintenance easier to teachers and
assistants.

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 9 / 37



Project's Modus Operandi

The compiler is designed as a long pipe composed of several modules.

The project is divided in several steps, where students have to
implement one (or two) module(s).

Code with gaps.

Work is evaluated by a program at each delivery.

Students defend their work every two steps in front of a teaching
assistant.

Several optional assignments are given as extra modules.

Motivated students can choose to proceed with the implementation of
the back-end of the compiler.

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 10 / 37



Project's Modus Operandi

The compiler is designed as a long pipe composed of several modules.

The project is divided in several steps, where students have to
implement one (or two) module(s).

Code with gaps.

Work is evaluated by a program at each delivery.

Students defend their work every two steps in front of a teaching
assistant.

Several optional assignments are given as extra modules.

Motivated students can choose to proceed with the implementation of
the back-end of the compiler.

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 10 / 37



Project's Modus Operandi

The compiler is designed as a long pipe composed of several modules.

The project is divided in several steps, where students have to
implement one (or two) module(s).

Code with gaps.

Work is evaluated by a program at each delivery.

Students defend their work every two steps in front of a teaching
assistant.

Several optional assignments are given as extra modules.

Motivated students can choose to proceed with the implementation of
the back-end of the compiler.

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 10 / 37



Project's Modus Operandi

The compiler is designed as a long pipe composed of several modules.

The project is divided in several steps, where students have to
implement one (or two) module(s).

Code with gaps.

Work is evaluated by a program at each delivery.

Students defend their work every two steps in front of a teaching
assistant.

Several optional assignments are given as extra modules.

Motivated students can choose to proceed with the implementation of
the back-end of the compiler.

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 10 / 37



Figures

20 years of existence.

250/300 students per year (on average).

Project done in groups of 4 students.

6 mandatory steps (compiler front-end).

4 optional steps (compiler back-end).

Reference compiler: 25KLOC.

Students are expected to write about 5500 lines (or about 7000 lines,
with the optional assignments).

250+ pages of documentation (reference manual
[Demaille and Levillain, 2007b] and project assignments
[Demaille and Levillain, 2007a]).

3 papers in international conferences
[Demaille, 2005, Demaille et al., 2008, Demaille et al., 2009].

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 11 / 37



History I

2000 Beginning of the Tiger Project: a front-end, a single teacher, no
assistant.

2001 Have students learn and use the Autotools for project maintenance.

2002 Teaching Assistants involved in the project.
Interpreter for the Intermediate Representation (IR) language
(HAVM).

2003 Addition of a MIPS back-end, partly from the work of motivated
students.
Interpreter for the MIPS language (Nolimips).
The structures of the Abstract Syntax Tree (AST) and a visitor are
generated from a description �le.

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 12 / 37



History II

2005 A second teacher in the project maintenance and supervision.
First uses of some Boost libraries (Boost.Variant, Boost Graph
Library (BGL), Smart Pointers).
First use of concrete-syntax program transformations (code
generation) using TWEASTs

2007 Tiger becomes an Object-Oriented Language (OOL).

2009 C++ objects on the parser stack.

2011 Extension of Bison's grammar to handle named parameters.

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 13 / 37



History I

2012 Conversion of tc to C++11.

2015 Even more C++11/C++14, aiming at C++17.
OO is now optional.
Much simpler/faster build system.
Support form ARM backend.

2016 Support for LLVM intermediate langage.

2017 Introduce Docker�le.
Move on C++17

2017 Introduce Docker�le.

2018 Refactoring python bindings for jupyter-notebooks

2019 Rework assignments

2020 Setup Tigrou's project

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 14 / 37



Practical information

1 Overview of the Tiger Project

2 Practical information

3 Rules of the Game

4 Vocabulary and Structure of a compiler

5 The Tiger Compiler (and Tigrou's architecture)

6 The Tiger Language

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 15 / 37



Entry Points

Home page of the project:
http://tiger.lrde.epita.fr

Resources for the project:
http://www.lrde.epita.fr/~tiger

news.epita.fr newsgroup:
assistants.tiger

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 16 / 37

http://tiger.lrde.epita.fr
http://www.lrde.epita.fr/~tiger
news.epita.fr
assistants.tiger


Reference Documents

Tiger Compiler Project Assignments:
http://assignments.lrde.epita.fr/

Tiger Compiler Reference Manual (TCRM):
http://www.lrde.epita.fr/~tiger/tiger.html

http://www.lrde.epita.fr/~tiger/tiger.split

http://www.lrde.epita.fr/~tiger/tiger.pdf

http://www.lrde.epita.fr/~tiger/tiger.info

http://www.lrde.epita.fr/~tiger/tiger.txt

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 17 / 37

http://assignments.lrde.epita.fr/
http://www.lrde.epita.fr/~tiger/tiger.html
http://www.lrde.epita.fr/~tiger/tiger.split
http://www.lrde.epita.fr/~tiger/tiger.pdf
http://www.lrde.epita.fr/~tiger/tiger.info
http://www.lrde.epita.fr/~tiger/tiger.txt


Lectures notes

Slides (like these ones):
http://www.lrde.epita.fr/~tiger/lecture-notes/slides/

Handouts (if you need to print lectures, please use these and save a tree):

1-up http://www.lrde.epita.fr/~tiger/lecture-notes/

handouts/

4-up http://www.lrde.epita.fr/~tiger/lecture-notes/

handouts-4/

Subdirectories:

ccmp/ CCMP lecture notes

tc/ TC-n presentations, given by the Assistants

tyla/ TYLA lecture notes

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 18 / 37

http://www.lrde.epita.fr/~tiger/lecture-notes/slides/
http://www.lrde.epita.fr/~tiger/lecture-notes/handouts/
http://www.lrde.epita.fr/~tiger/lecture-notes/handouts/
http://www.lrde.epita.fr/~tiger/lecture-notes/handouts-4/
http://www.lrde.epita.fr/~tiger/lecture-notes/handouts-4/


Other Useful Resources

Doxygen Documentation:
http://www.lrde.epita.fr/~tiger/tc-doc/

Past exams [outdated since 2016]
http://www.lrde.epita.fr/~tiger/exams/

Emacs/Vim modes
http://www.lrde.epita.fr/~tiger/tc/tiger.el

http://www.lrde.epita.fr/~tiger/tc/tiger.vim

Docker for a fully working environnement
http://www.lrde.epita.fr/~tiger/tc/docker-sid

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 19 / 37

http://www.lrde.epita.fr/~tiger/tc-doc/
http://www.lrde.epita.fr/~tiger/exams/
http://www.lrde.epita.fr/~tiger/tc/tiger.el
http://www.lrde.epita.fr/~tiger/tc/tiger.vim
http://www.lrde.epita.fr/~tiger/tc/docker-sid


Rules of the Game

1 Overview of the Tiger Project

2 Practical information

3 Rules of the Game

4 Vocabulary and Structure of a compiler

5 The Tiger Compiler (and Tigrou's architecture)

6 The Tiger Language

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 20 / 37



Nul n'est censé ignorer la loi.

http://www.assignements.lrde.epita.fr

1 No copy between groups.

2 Tests are part of the project
(test cases and frameworks should not be exchanged).

3 Fixing mistakes earlier is better (and less expensive).
4 Work between groups is encouraged!

As long as they don't cheat.

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 21 / 37

http://www.assignements.lrde.epita.fr


Nul n'est censé ignorer la loi.

http://www.assignements.lrde.epita.fr

1 No copy between groups.

2 Tests are part of the project
(test cases and frameworks should not be exchanged).

3 Fixing mistakes earlier is better (and less expensive).
4 Work between groups is encouraged!

As long as they don't cheat.

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 21 / 37

http://www.assignements.lrde.epita.fr


Nul n'est censé ignorer la loi.

http://www.assignements.lrde.epita.fr

1 No copy between groups.

2 Tests are part of the project
(test cases and frameworks should not be exchanged).

3 Fixing mistakes earlier is better (and less expensive).
4 Work between groups is encouraged!

As long as they don't cheat.

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 21 / 37

http://www.assignements.lrde.epita.fr


Nul n'est censé ignorer la loi.

http://www.assignements.lrde.epita.fr

1 No copy between groups.

2 Tests are part of the project
(test cases and frameworks should not be exchanged).

3 Fixing mistakes earlier is better (and less expensive).
4 Work between groups is encouraged!

As long as they don't cheat.

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 21 / 37

http://www.assignements.lrde.epita.fr


Vocabulary and Structure of a compiler

1 Overview of the Tiger Project

2 Practical information

3 Rules of the Game

4 Vocabulary and Structure of a compiler

5 The Tiger Compiler (and Tigrou's architecture)

6 The Tiger Language

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 22 / 37



Compiler

A compiler is a program that converts a source language into a
target machine language.

A cross-compiler is a program (running on a machine A) that
converts a source language into a target machine language B
(di�erent from A).

A transpiler is a program that converts a source language into a
target language (same level of abstraction).

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 23 / 37



Compiler

Pre-processor remove all de�ne, include directives. Produces a pure
code.

Linker combines one or more object �les and possible some library
code into either some executable, or some library

Loader A loader reads the executable code into memory, does some
address translation and tries to run the program resulting in a running
program.

Linker and loader performs Basically the loader does the program
loading; the linker does the symbol resolution; and either of them can
do the relocation.

Static/Dynamic Compile time / runtime

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 24 / 37



The C Compilation Model

Which (coarse-grained) steps can we �nd in gcc?

cpp (preprocessor)

cc1 (actual C compiler)

as (assembler)

ld (linker)

→ A pipe.

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 25 / 37



The C Compilation Model

Which (coarse-grained) steps can we �nd in gcc?

cpp (preprocessor)

cc1 (actual C compiler)

as (assembler)

ld (linker)

→ A pipe.

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 25 / 37



The C Compilation Model

Which (coarse-grained) steps can we �nd in gcc?

cpp (preprocessor)

cc1 (actual C compiler)

as (assembler)

ld (linker)

→ A pipe.

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 25 / 37



The C Compilation Model

Which (coarse-grained) steps can we �nd in gcc?

cpp (preprocessor)

cc1 (actual C compiler)

as (assembler)

ld (linker)

→ A pipe.

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 25 / 37



The C Compilation Model

Which (coarse-grained) steps can we �nd in gcc?

cpp (preprocessor)

cc1 (actual C compiler)

as (assembler)

ld (linker)

→ A pipe.

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 25 / 37



The C Compilation Model

Which (coarse-grained) steps can we �nd in gcc?

cpp (preprocessor)

cc1 (actual C compiler)

as (assembler)

ld (linker)

→ A pipe.

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 25 / 37



The Tiger Compiler (and Tigrou's architecture)

1 Overview of the Tiger Project

2 Practical information

3 Rules of the Game

4 Vocabulary and Structure of a compiler

5 The Tiger Compiler (and Tigrou's architecture)

6 The Tiger Language

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 26 / 37



tc: A Compiler as A Long Pipe

Bind Type

Translate

CanonInstr. sel.Liveness an.Reg. alloc.

tokens ASTchars

IG

pre-asm

Parse

Bison AstGen bound
and typed

AST

HIR

MonoBURG

bound
AST

LIR

HAVM

asm

Nolimips

Scan

hand-written module generated module

parse.y

Flex

scan.l

mips.brg

ast.yml

interpretergenerator

generator input

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 27 / 37



tc: A Compiler as A Long Pipe

Bind Type

Translate

CanonInstr. sel.Liveness an.Reg. alloc.

tokens ASTchars

IG

pre-asm

Parse

Bison AstGen bound
and typed

AST

HIR

MonoBURG

bound
AST

LIR

HAVM

asm

Nolimips

Scan

hand-written module generated module

parse.y

Flex

scan.l

mips.brg

ast.yml

interpretergenerator

generator input

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 27 / 37



tc: A Compiler as A Long Pipe

Bind Type

Translate

CanonInstr. sel.Liveness an.Reg. alloc.

tokens ASTchars

IG

pre-asm

Parse

Bison AstGen bound
and typed

AST

HIR

MonoBURG

bound
AST

LIR

HAVM

asm

Nolimips

Scan

hand-written module generated module

parse.y

Flex

scan.l

mips.brg

ast.yml

interpretergenerator

generator input

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 27 / 37



Other Compiling Strategies

Intermediate language-based strategy: SmartEi�el, GHC

Bytecode strategy: Java bytecode (JVM), CIL (.NET)

Hybrid approaches: GCJ (Java bytecode or native code)

Retargetable optimizing back ends: MLRISC, VPO (Very Portable
Optimizer), and somehow C- - (Quick C- -).
Modular systems: LLVM (compiler as a library, centered on a typed
IR). Contains the LLVM core libraries, Clang, LLDB, etc. Also:

VMKit: a substrate for virtual machines (JVM, etc.).
Emscripten: an LLVM-to-JavaScript compiler. Enables C/C++ to JS
compilation.

Intermediate Representations (IR) are fundamental.

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 28 / 37



The Tiger Language

1 Overview of the Tiger Project

2 Practical information

3 Rules of the Game

4 Vocabulary and Structure of a compiler

5 The Tiger Compiler (and Tigrou's architecture)

6 The Tiger Language

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 29 / 37



Two �avors

Appel's De�ned in Modern Compiler Implementation books
(see the Appendix).

Ours De�ned in the Tiger Compiler Reference Manual (TCRM).

Features many extensions: import keyword, overloading,
OOP, . . .
Implemented by LRDE's reference compiler.
This is the target language for your project.

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 30 / 37



Two �avors

Appel's De�ned in Modern Compiler Implementation books
(see the Appendix).

Ours De�ned in the Tiger Compiler Reference Manual (TCRM).

Features many extensions: import keyword, overloading,
OOP, . . .
Implemented by LRDE's reference compiler.
This is the target language for your project.

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 30 / 37



Two �avors

Appel's De�ned in Modern Compiler Implementation books
(see the Appendix).

Ours De�ned in the Tiger Compiler Reference Manual (TCRM).

Features many extensions: import keyword, overloading,
OOP, . . .
Implemented by LRDE's reference compiler.
This is the target language for your project.

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 30 / 37



Two �avors

Appel's De�ned in Modern Compiler Implementation books
(see the Appendix).

Ours De�ned in the Tiger Compiler Reference Manual (TCRM).

Features many extensions: import keyword, overloading,
OOP, . . .
Implemented by LRDE's reference compiler.
This is the target language for your project.

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 30 / 37



Two �avors

Appel's De�ned in Modern Compiler Implementation books
(see the Appendix).

Ours De�ned in the Tiger Compiler Reference Manual (TCRM).

Features many extensions: import keyword, overloading,
OOP, . . .
Implemented by LRDE's reference compiler.
This is the target language for your project.

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 30 / 37



Tiger

Toy language (not industry-proof). . .

. . . but still e�ective.

Imperative language, descendant of Algol.
Functional �avour.

a := if 1 then 2 else 3

function incr(x : int) : int = x + 1

Simple and sound grammar.

Well de�ned semantics.

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 31 / 37



Tiger

Toy language (not industry-proof). . .

. . . but still e�ective.

Imperative language, descendant of Algol.
Functional �avour.

a := if 1 then 2 else 3

function incr(x : int) : int = x + 1

Simple and sound grammar.

Well de�ned semantics.

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 31 / 37



Tiger

Toy language (not industry-proof). . .

. . . but still e�ective.

Imperative language, descendant of Algol.
Functional �avour.

a := if 1 then 2 else 3

function incr(x : int) : int = x + 1

Simple and sound grammar.

Well de�ned semantics.

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 31 / 37



Tiger

Toy language (not industry-proof). . .

. . . but still e�ective.

Imperative language, descendant of Algol.
Functional �avour.

a := if 1 then 2 else 3

function incr(x : int) : int = x + 1

Simple and sound grammar.

Well de�ned semantics.

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 31 / 37



Tiger

Toy language (not industry-proof). . .

. . . but still e�ective.

Imperative language, descendant of Algol.
Functional �avour.

a := if 1 then 2 else 3

function incr(x : int) : int = x + 1

Simple and sound grammar.

Well de�ned semantics.

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 31 / 37



Tiger

Toy language (not industry-proof). . .

. . . but still e�ective.

Imperative language, descendant of Algol.
Functional �avour.

a := if 1 then 2 else 3

function incr(x : int) : int = x + 1

Simple and sound grammar.

Well de�ned semantics.

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 31 / 37



Tiger

Toy language (not industry-proof). . .

. . . but still e�ective.

Imperative language, descendant of Algol.
Functional �avour.

a := if 1 then 2 else 3

function incr(x : int) : int = x + 1

Simple and sound grammar.

Well de�ned semantics.

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 31 / 37



Tiger

Toy language (not industry-proof). . .

. . . but still e�ective.

Imperative language, descendant of Algol.
Functional �avour.

a := if 1 then 2 else 3

function incr(x : int) : int = x + 1

Simple and sound grammar.

Well de�ned semantics.

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 31 / 37



Your �rst Tiger Program

print("Hello World!\n")

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 32 / 37



Your second Tiger program

let

function hello(name : string) =

print(concat("Hello ", name))

in

hello("You");

print("\n")

end

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 33 / 37



The classic Factorial function

let

/* Compute n! */

function fact(n : int) : int =

if n = 0

then 1

else n * fact(n - 1)

in

print_int(fact(10));

print("\n")

end

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 34 / 37



Bibliography I

Appel, A. W. (1998).
Modern Compiler Implementation in C, Java, ML.
Cambridge University Press.

Debray, S. (2002).
Making compiler design relevant for students who will (most likely)
never design a compiler.
In Proceedings of the 33rd SIGCSE technical symposium on Computer
science education, pages 341�345. ACM Press.

Demaille, A. (2005).
Making compiler construction projects relevant to core curriculums.
In Proceedings of the Tenth Annual Conference on Innovation and
Technology in Computer Science Education (ITICSE'05), pages
266�270, Universidade Nova de Lisboa, Monte da Pacarita, Portugal.

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 35 / 37



Bibliography II

Demaille, A. and Levillain, R. (2007a).
The Tiger Compiler Project Assignment.
EPITA Research and Development Laboratory (LRDE), 14-16 rue
Voltaire, FR-94270 Le Kremlin-Bicêtre, France.
http://www.lrde.epita.fr/~akim/ccmp/assignments.pdf.

Demaille, A. and Levillain, R. (2007b).
The Tiger Compiler Reference Manual.
EPITA Research and Development Laboratory (LRDE), 14-16 rue
Voltaire, FR-94270 Le Kremlin-Bicêtre, France.
http://www.lrde.epita.fr/~akim/ccmp/tiger.pdf.

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 36 / 37

http://www.lrde.epita.fr/~akim/ccmp/assignments.pdf
http://www.lrde.epita.fr/~akim/ccmp/tiger.pdf


Bibliography III

Demaille, A., Levillain, R., and Perrot, B. (2008).
A set of tools to teach compiler construction.
In Proceedings of the Thirteenth Annual Conference on Innovation and
Technology in Computer Science Education (ITICSE'08), pages 68�72,
Universidad Politécnica de Madrid, Spain.

Demaille, A., Levillain, R., and Sigoure, B. (2009).
TWEAST: A simple and e�ective technique to implement
concrete-syntax AST rewriting using partial parsing.
In Proceedings of the 24th Annual ACM Symposium on Applied
Computing (SAC'09), pages 1924�1929, Waikiki Beach, Honolulu,
Hawaii, USA.

A. Demaille, E. Renault, R. Levillain Introduction to the Tiger Projectand Tigrou project 37 / 37


	Overview of the Tiger Project
	Practical information
	Rules of the Game
	Vocabulary and Structure of a compiler
	The Tiger Compiler (and Tigrou's architecture)
	The Tiger Language

