
 1

Practical Programming

The C Language :The C Language :

David BouchetDavid Bouchet

david.bouchet.epita@gmail.com

Compiling and RunningCompiling and Running

 2

Compiling and Running Processes (1)

 3

Compiling and Running Processes (2)

Static LibrariesStatic Libraries
● Set of routines that are included in the executable file.
● The executable file is larger.
● The user does not have to own the required libraries.
● If several executable files use the same library, each file

contains its own version of the library, which cannot be
shared.

Dynamic LibrariesDynamic Libraries
● Set of routines that are not included in the executable file.
● The executable file is smaller.
● The user has to own the required libraries.
● If several executable files use the same library, they all

share the same version of the library.

 4

Compiling and Running Processes (3)

● PreprocessorPreprocessor: Allows inclusion of files, macro
expansions and conditional compilation.
(Preprocessor instructions are prefixed with #.)

● Core compilerCore compiler: Translates C language into assembly
language.

● AssemblerAssembler: Translates assembly language into
native machine code (object files).

● LinkerLinker: Links different object files and libraries (if
required) and generates an executable file.

● LoaderLoader: Loads an executable file into memory, links it
to the dynamic libraries (if required) and executes it.

 5

Compiling Process

Each stage of the compiling process can be done separately.
Each tool can be invoked one at a time.

But usually, they are invoked implicitly by the compiler. But usually, they are invoked implicitly by the compiler.

 6

Your First Program (1)

$ ls
hello_world.c
$ gcc hello_world.c
$ ls
a.out hello_world.c
$./a.out
Hello World!

hello_world.c

““a.out”a.out” is the default filename for the executable file.is the default filename for the executable file.

 7

Your First Program (2)

Some options can be used:Some options can be used:
$ ls
hello_world.c
$ gcc -Wall -Wextra -Werror -O3 -o hello hello_world.c
$ ls
hello hello_world.c
$./hello
Hello World!

● WallWall: Enables all warnings.

● WextraWextra: Enables extra warnings.

● WerrorWerror: Makes all warnings into error.

● 0303: Enables all optimizations.

● oo: Specifies the output filename.

 8

Multiple Files (1)

hello.c blank.c world.c

blank.h world.h

Header FilesHeader Files
.h = .header.h = .header

 9

Multiple Files (2)

$ gcc -c blank.c # Generate blank.o
$ gcc -c world.c # Generate world.o
$ gcc -c hello.c # Generate hello.o

$ gcc hello.o blank.o world.o

Generate the object files (preprocessor, core compiler, assembler)Generate the object files (preprocessor, core compiler, assembler)

Link the object files and generate the executable file (linker)Link the object files and generate the executable file (linker)

$./a.out
Hello World!
Good Bye!

Execute the executable file (loader)Execute the executable file (loader)

 10

Multiple Files (3)

Let us modify “world.c”Let us modify “world.c”

 11

Multiple Files (4)

$ gcc -c world.c # Update world.o

$ gcc hello.o blank.o world.o

Generate the object files (preprocessor, core compiler, assembler)Generate the object files (preprocessor, core compiler, assembler)

Link the object files and generate the executable file (linker)Link the object files and generate the executable file (linker)

$./a.out
Hello World!
Ciao!

Execute the executable file (loader)Execute the executable file (loader)

We do not have to update We do not have to update “hello.o”“hello.o” and and “blank.o”“blank.o” because because
“hello.c”“hello.c” and and “blank.c”“blank.c” have not been modified. have not been modified.

 12

GNU Make – First Makefile (1)

Makefile

$ make
gcc -c hello.c
gcc -c blank.c
gcc -c world.c
gcc hello.o blank.o world.o -o hello
$./hello
Hello World!
Ciao!

 13

GNU Make – First Makefile (2)

Let us modify “world.c”Let us modify “world.c” $ make
gcc -c world.c
gcc hello.o blank.o world.o -o hello
$./hello
Hello World!
Arrivederci!
$ make
Make: Nothing to be done for 'all'.

 14

GNU Make – First Makefile (3)

Makefiles can be much smarter than that.Makefiles can be much smarter than that.

To know more about Makefiles, read the following page:

https://slashvar.github.io/2017/02/13/using-gnu-make.html

https://slashvar.github.io/2017/02/13/using-gnu-make.html

 15

Some Terminology

Declare a function

Define a function

Define a function

To declare a function, we use its prototype. For instance:

void print_good_bye();

is the prototype of the print_good_bye() function.

 16

Header Files

● They can be included only once.
● They contain declarations.

Conditional compilation.
Prevent from being included several times.

Function declarations.

● Compiling (generating object files) needs declarations.
● Linking (generating executable files) needs definitions.

Note that:Note that:

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

