EPITA

Mathématiques

Contrôle (S3)

octobre 2018

Nom:				
Prénom :				
Entourer le nom de votre profe	sseur de TI	D : Mme Boudin	/ M. Goron / M. Rode	ot
Classe:				
NOTE				
NOTE:				

Contrôle 1

Durée : trois heures

Documents et calculatrices non autorisés

Exercice 1 (3 points)

1. Déterminer $\lim_{n\to +\infty} u_n$ où $u_n = n^2 \left(e^{1/n^2} - \cos\left(\frac{1}{n}\right) \right)$.

2. Soit $a \in \mathbb{R}^*$. Déterminer $\lim_{n \to +\infty} \left(1 + \frac{1}{an}\right)^{2n}$.

Exercice 2 (5,5 points)

1. Déterminer $\lim_{n\to+\infty} ne^{1/n} - n$ puis en déduire la nature de la série $\sum (ne^{1/n} - n)$.

2. Soit $a \in \mathbb{R}_+^*$. Déterminer, via la règle de d'Alembert, la nature de la série $\sum \frac{(n!)^a}{(2n)!}$ en fonction de a.

3. Soit $a \in]0,1[$. Déterminer, via la règle de Cauchy, la nature de la série $\sum \frac{2^{\sqrt{n}}}{a^{n!}}$.

4. Soit $a \in \mathbb{R}_+^*$. Déterminer la nature de $\sum \frac{(-1)^n}{n^a}$ en justifiant votre réponse.

Exercice 3 (6 points)

1. Soient $N \in \mathbb{N}$, (u_n) et (v_n) deux suites strictement positives telles que pour tout $n \geqslant N$, $\frac{u_{n+1}}{u_n} \leqslant \frac{v_{n+1}}{v_n}$.

Montrer que $\sum v_n$ converge $\Longrightarrow \sum u_n$ converge.

2. Soit (u_n) une suite réelle strictement positive telle que $\frac{u_{n+1}}{u_n} = 1 - \frac{\alpha}{n} + o\left(\frac{1}{n}\right)$ où $\alpha \in \mathbb{R}$.

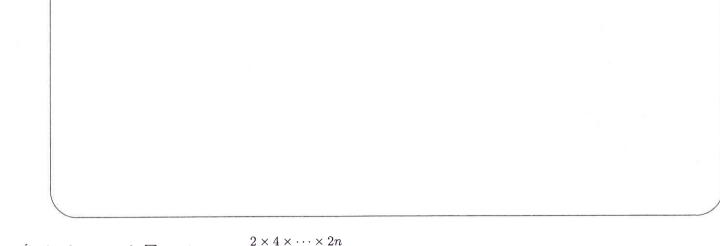
a. Soit $(v_n) = \left(\frac{1}{n^{\beta}}\right)$ où $\beta \in \mathbb{R}$. Montrer que $\frac{v_{n+1}}{v_n} = 1 - \frac{\beta}{n} + o\left(\frac{1}{n}\right)$.

b. On suppose que $\alpha > 1$. Montrer que $\sum u_n$ converge.

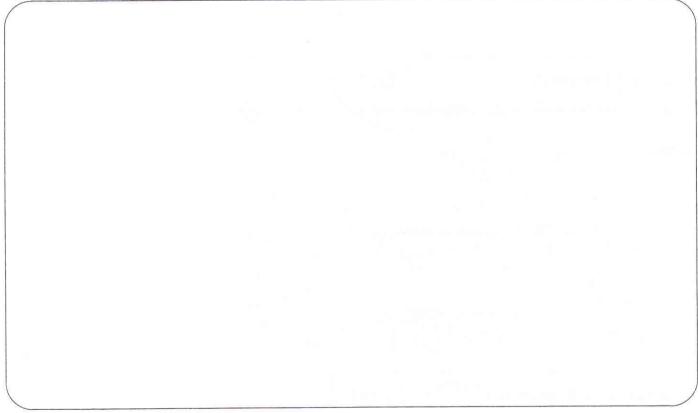
N.B. : on pourra considérer $\beta \in \mathbb{R}$ tel que $1 < \beta < \alpha$ et utiliser la suite (v_n) introduite dans la question précédente.

c. On suppose $\alpha < 1$. Montrer que $\sum u_n$ diverge.

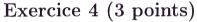
N.B.: on pourra considérer $\beta \in \mathbb{R}$ tel que $\alpha < \beta < 1$ et utiliser la suite (v_n) introduite dans la question a.



3. Étudier la nature de $\sum u_n$ où $u_n=\frac{2\times 4\times \cdots \times 2n}{3\times 5\times \cdots \times (2n+1)}$



4. Discuter suivant les valeurs de $a \in \mathbb{R}_+$ de la nature de $\sum u_n$ où $u_n = \frac{n \times n!}{(a+1) \times \cdots \times (a+n)}$



Soit $\alpha \in \mathbb{R}_+^*$. On considère la suite $(u_n)_{n\geqslant 2}$ définie pour tout $n\geqslant 2$ par $u_n=\frac{(-1)^n}{\sqrt{n^\alpha+(-1)^n}}$.

1. Vérifier que $u_n = \frac{(-1)^n}{n^{\alpha/2}} \cdot \frac{1}{\left(1 + \frac{(-1)^n}{n^{\alpha}}\right)^{1/2}}$

2. En déduire $(a,b) \in \mathbb{R}^2$ tel que $u_n = \frac{(-1)^n a}{n^{\alpha/2}} + \frac{b}{n^{3\alpha/2}} + o\left(\frac{1}{n^{3\alpha/2}}\right)$.

3. En déduire la nature de $\sum u_n$ en fonction de α .	

Exercice 5 (3 points)

Déterminer la nature de la série $\sum u_n$ où, pour tout $n \in \mathbb{N}^*$, $u_n = \sqrt[3]{n^3 + 2n} - \sqrt{n^2 + 3}$.