

Kouval

$$
U_{1}=U_{2}=0 \quad U=E
$$

$$
\begin{aligned}
& x_{1} \text { fermí }:\left(U_{k_{2}}=0\right) I_{n_{1}} ? \\
& K_{2} \text { ?ermí }\left(I_{k_{2}}=0\right) U_{k_{2}} \text { ? }
\end{aligned}
$$

$$
\begin{aligned}
& U U_{3}=R \times I \\
& U=E-R I T \\
& I=\frac{V}{R} \\
& U=\frac{1}{2} R
\end{aligned}
$$

$$
V=\frac{E \cdot \beta}{R+R}=\frac{E}{2}
$$

$$
\text { E } \uparrow
$$

$$
\begin{aligned}
& \frac{1}{4 R}+\frac{1}{4 R}=\frac{2}{4 R}=\frac{1}{2 R}=2 R+2 R=4 R \Rightarrow 2 R+R=3 R \\
& \frac{1}{6 R}+\frac{1}{R T}=\frac{1}{10 R} \Leftrightarrow 10 R+R=11 R \\
& \frac{1}{2 B}+\frac{1}{2 R}=R+R=\frac{1}{2 R}+\frac{1}{2 R}=R \\
& \frac{1}{3 B}+\frac{1}{2 B}=5 R+R=\frac{1}{6 R}+\frac{A}{6 R}=\frac{7}{6 R}=\frac{6 B}{7} \\
& \frac{1}{4 R}+\frac{1}{4 B}=2 R+4 R=\frac{1}{6 R}+\frac{3}{6 B}=\frac{4}{6 B}+\frac{3}{6 B}=2 R \\
& \frac{1}{2 B}+\frac{1}{2 R}=R+2 R=\frac{1}{3 R}+\frac{1}{3 R}=\frac{8}{3 R}=\frac{3 R}{2}+\frac{4 R}{2}=\frac{7 R}{2} \\
& \varepsilon-U_{1}-U_{2}=0 \\
& V=U_{2}+V_{k} \\
& R_{1}=\frac{V_{1}}{I} \\
& R_{2}=\frac{U_{2}}{I} \\
& E-U_{1}-U_{2}=0 \\
& E-U_{1}-V=0 \text { can } U_{V_{1}}=0 \\
& E-3 R_{2}-B_{2}=0 \\
& E-4 R_{2}
\end{aligned}
$$

$$
\begin{aligned}
& V=U_{2}=\frac{E \times R_{2}}{R_{1}+R_{2}} \\
& V_{2}=E \times \frac{R_{2}}{R_{2}+3 R_{2}}=E \times \frac{R_{2}}{4 R_{2}}=\frac{E}{4}=\frac{10}{24}=2,5 \mathrm{~V}
\end{aligned}
$$

$$
K_{1} \text { ouvert }\left(I_{K_{1}}=0\right) \cdot V_{k 1}^{\prime} \text { ? }
$$

$$
k_{2}^{1} \text { ouvert }\left(I k_{2}=0\right) V_{k 2} \text { ? }
$$

$$
\begin{gathered}
I_{2}=0 \\
U_{5}=R \cdot I_{2}=0 \\
U=U_{n_{2}}=0
\end{gathered}
$$

$$
K_{1} \text { ounert }\left(I K_{2}=0\right) U K_{1} \text { ? }
$$

K_{2} Quvert $\left(\mp K_{2}=0\right) \cup k_{2}$?

$$
\begin{aligned}
& I_{1}=0 \\
& U_{1}=R \cdot I_{1}=0
\end{aligned}
$$

$$
\begin{aligned}
& I_{h_{2} 2}=O=I \\
& U_{2}=R, I_{H_{2}}=0
\end{aligned}
$$

$$
E-u_{1}-J=0
$$

$$
E=U
$$

$$
\begin{aligned}
& k_{1} \text { ourat }\left(I k_{1}=0\right) U k_{2} ? \\
& k_{2} \text { farmé }\left(U_{k_{2}}=0\right) I k_{2} \text { ? }
\end{aligned}
$$

$$
\begin{array}{ll}
U=V_{2} \quad & E-U_{1}-U_{2}=0 \\
U_{2}=R_{I} I \\
U_{2}=R_{0} I_{k 2}
\end{array}
$$

$$
\begin{aligned}
& U_{1}=0 \\
& U=U_{2} \\
& E-U_{1}-U=0 \\
& E=U
\end{aligned}
$$

$$
\begin{aligned}
& E-U_{1}-U_{3}-U=0 \\
& U_{1}= \\
& E-U_{1}-U_{2}=0 \\
& E f-\varphi_{1}-v_{3}-U=\not 2-\varphi_{1}-v_{2} \\
& U+U_{3}-U_{2}=0 \\
& v_{1}=R_{1} \cdot I_{1} \\
& U_{2}=R_{2} \cdot I_{2} \\
& I_{3}=0 \\
& I_{1}=I_{2}=I \\
& U_{3}=R_{3}, I_{3} \\
& I_{1}=I_{2}+I_{3} \\
& \text { Or } \\
& U_{1}=R_{1}=I \\
& U_{2}=R_{2} \cdot I \\
& U_{3}=0 \\
& U=U_{2} \\
& \text { i } \\
& \text { Pont divixun } \\
& U=\frac{E \cdot R_{2}}{R_{1}+R_{2}}=\frac{10 v \cdot 8 \cdot k}{2 k+8 k}=
\end{aligned}
$$

$$
V=E \times \frac{R}{R_{1}+R+R}
$$

$$
\begin{aligned}
& E-U_{1}-U_{3}-U_{3 E}-U_{4}=0 \\
& E-U_{1}-U_{2}-U_{4}=0
\end{aligned}
$$

$$
I_{3}=0
$$

$$
U_{1}=B_{2} \cdot I
$$

$$
V_{2}=R_{2} \cdot F_{2}
$$

Ereacisea ${ }^{2}$:

$$
\begin{aligned}
& \frac{1}{R_{3}+R_{4}}+\frac{1}{R_{2}} \\
& \frac{1}{100+500}+\frac{2}{400}=\frac{3}{400}=\frac{400}{3} \\
& \frac{700}{3} \\
& +100 \Omega=\frac{700 \Omega}{3}
\end{aligned}
$$

$$
\begin{aligned}
& U_{1}=R_{1} \cdot I \\
& U_{1}=100 \mathrm{~V}
\end{aligned}
$$

$$
I=I_{2}+I_{3}
$$

$$
U_{A B}=R_{2} \cdot I_{2}
$$

$$
I_{2}=\frac{U_{A_{B}}}{R_{2}}=
$$

$$
\begin{aligned}
& U_{A B}=\left(R_{B}+R_{4}\right) I_{3} \\
& U_{A B}=R_{A B} \cdot I \\
& I_{2}=\frac{U_{A B}}{R_{2}}=\frac{1}{R_{2}} \times I \times \frac{1}{\frac{1}{R_{2}}+\frac{1}{R_{3}+R_{4}}}
\end{aligned}
$$

$$
\begin{aligned}
& I_{2}=\frac{I^{\prime} \times \frac{1}{R_{12}}+\frac{1}{R_{2}+R_{4}}}{\frac{1}{R_{2}}+\frac{1}{R_{3}+R_{4}}} \\
& I_{3}=\frac{I}{R_{3}+R_{4}} \\
& U_{2}=? \\
& U_{2}=-R_{1} \cdot I_{0} \\
& U_{0}=E_{2}-U_{1}=E+R_{1} \cdot I_{0} \\
& I_{2}=? \\
& U_{2}=R_{2} \cdot I_{2} \\
& E_{2}+U_{2}-E_{3}=0 \\
& U_{2}=E_{3}-E_{2} \\
& I_{2}=\frac{E_{3}-E_{2}}{R_{2}}
\end{aligned}
$$

Erecaice n'2

2)

Lai des mailles:

$$
\left\{\begin{array}{l}
E-U_{1}-U=0 \\
E-U_{2}-U=0 \\
U-U=0
\end{array}\right.
$$

Lei des neendo:

$$
I=I_{2}+I_{3} \quad \& U_{2}=U_{3}
$$

$$
E-R_{1} \cdot \vec{U}-R_{2} \cdot I_{2}=0
$$

$$
R_{1} \cdot I=R_{e} \cdot I_{2}-E
$$

$$
I=\frac{U_{2}}{R_{2}}+\frac{U_{3}}{R_{3}}
$$

$$
I=\frac{R_{1} \cdot I_{2}-E}{R_{1}}=\frac{R_{2} \cdot \frac{U_{2}}{R_{2}}-E}{R_{1}}=\frac{V_{2}-E}{R_{1}}
$$

$$
I=\frac{U}{R}=\frac{U_{2}}{R_{2}}+\frac{U_{3}}{R_{3}}
$$

$$
\begin{aligned}
& U=R \cdot I \quad E-U_{1}-U_{2}=0 \\
& I_{1}=I_{2}+I_{3}=\frac{U}{R_{2}}+\frac{U}{R_{3}}=U\left(\frac{1}{R_{2}}+\frac{1}{R_{3}}\right)
\end{aligned}
$$

$$
I_{1}=\left(\epsilon-U_{2}\right)\left(\frac{1}{R_{2}}+\frac{1}{R_{3}}\right)
$$

$$
I_{1}=\left(£-R_{1} \cdot I_{2}\right)\left(\frac{1}{R_{2}}+\frac{1}{R_{3}}\right)
$$

$$
I_{1}=E\left(\frac{1}{R_{2}}+\frac{1}{R_{3}}\right)-R_{1}\left(\frac{1}{R_{2}}+\frac{1}{R_{3}}\right) I_{1}
$$

- Divisen de tension
$\mathrm{Br}_{7} \mathrm{n}_{3}$

$$
R_{2}+R_{9}
$$

Divisen de comanar B_{2}

$$
\frac{1_{2}}{A_{2}+R_{3}}
$$

$$
\left\{\begin{array}{l}
R_{\text {eq }}=R_{1}+\frac{B_{2} R_{3}}{R_{2}+R_{3}} \\
I_{1}=\frac{E}{R_{\text {eq }}}=\frac{E}{R_{1}+-\frac{R_{2} R_{2}}{R_{2}+R_{3}}} \\
I_{1}=\frac{64}{6,25+\frac{10 \times 6}{10+6}}=\frac{64}{6,25+\frac{60}{16}}
\end{array}\right.
$$

$$
\begin{aligned}
& I_{1}=E \cdot \frac{R_{2}+R_{3}}{R_{2} R_{3}}-R_{1}\left(\frac{R_{2}+R_{3}}{R_{2} R_{3}}\right) I_{1} \\
& I_{1}\left(1+\frac{R_{1}\left(R_{2}+B_{3}\right)}{R_{2} R_{3}}\right)=\frac{E\left(R_{2}+R_{3}\right)}{R_{2} R_{3}+R_{1}\left(R_{2}+R_{3}\right.} \\
& I_{1}\left(\frac{R_{1}\left(R_{2}+R_{3}\right)+R_{2} R_{3}}{R_{2} R_{3}}\right)=E \cdot \frac{R_{2}+R_{3}}{R_{2} R_{3}} \quad R_{2} I_{2}=R_{8} I_{3} \quad I_{8}=\frac{R_{2}}{R_{2}} I_{2} \\
& I_{2} I_{2} \\
& I_{2}-I_{3} \\
& I_{2}=I_{1}-\frac{R_{2}}{R_{3}} I_{2} \quad I_{2}\left(1+\frac{R_{2}}{R_{3}}\right)=I_{1} \\
& I_{2}=\frac{R_{3}}{R_{2}+R_{3}} I_{1}
\end{aligned}
$$

lois des mailles

$$
\left\{\begin{array}{l}
\varepsilon-u_{1}^{\prime}-v=0 \\
2-u_{1}^{\prime}-v_{1}-v^{\prime}-u_{3}=0 \\
v-v_{1}-v_{1}^{\prime}-v_{3}=0
\end{array}\right.
$$

Lair dis noendo

$$
I=I_{2}+I_{3}
$$

$$
\begin{aligned}
U=\frac{E}{4} \quad U^{\prime} & =\frac{U \times R R}{2 R+R+3 R} \\
U^{\prime} & =\frac{U}{3}=\frac{E}{12}
\end{aligned}
$$

(2)

$$
\begin{aligned}
& E-U_{1}-U=0 \\
& U_{1}=B^{\prime} \cdot I \\
& U=\frac{12 B}{5} \cdot I \\
& U=\frac{E \times \frac{12 B}{5}}{R^{\prime}+\frac{12 R}{5}}=\frac{E \times 12 B}{5 R^{\prime}+12 R}=\frac{E}{4} \\
& 48 R=12 R+5 R^{\prime} \\
& B^{\prime}=36 R / 5 \text { By Hyperion }
\end{aligned}
$$

Divixue de tension :
Asraciation en erie de resistance.

$$
U_{i}=R_{i} \cdot I
$$

$$
R_{A B}=\sum_{1}^{n} R_{k}
$$

(2)

(3)

Divixan de comzant
Association de panallél de oivistance

$$
\begin{aligned}
& I_{i}=U_{A B} \cdot G_{i} \\
& I_{i}=\frac{I^{n} \cdot G_{i}}{\sum_{1}^{n} G_{k}}
\end{aligned}
$$

$$
I_{1}=\frac{I \times \frac{1}{3} B}{\frac{1}{3} R+\frac{1}{B}}=\frac{1}{4} I
$$

Tension: \rightarrow Lai d'Ohmm
Courandr \rightarrow Lai des Mailles

Lai dus noendo:

$$
I_{2}=I+I_{1}
$$

cois des maithes

$$
\begin{aligned}
& E-U_{2}=0 \\
& E-U+U_{1}=0
\end{aligned}
$$

Loi d'Ohmm:

$$
\begin{aligned}
& \left\{\begin{array}{l}
E=R_{2} \cdot I_{2} \\
E \cdot U+R_{1} \cdot I_{1}=0 \\
I_{2}=I+I_{1}
\end{array}\right. \\
& U=E+R_{1} \oplus I_{1} \\
& I=I_{2}-I_{1} \\
& I=\frac{E}{R_{2}}-I_{1}
\end{aligned}
$$

Laideo nseudo: Las d'ohrm:

$$
I_{1}=I_{2}+I_{3}
$$

$$
U=R_{3} \cdot I_{3}
$$

Loi des marillas

$$
U_{1}=R_{1} \cdot I_{1}
$$

$$
\left\{\begin{array}{l}
U=E_{1}-U_{1} \\
U_{1}=R_{1} \cdot I_{1} \\
I_{1}=I_{2}+U_{3}
\end{array}\right.
$$

$$
\begin{aligned}
& E_{1}-U_{1}-U=0 \quad \begin{array}{l}
U_{2}=R_{2} \cdot I_{2} \\
E_{2}-U_{2}+E_{-2}-U_{2}=0 \\
U_{2}-E_{2}-U=0
\end{array} \\
& U_{2}-E_{2} \quad\left\{\begin{array}{l}
U=R_{2} \cdot I_{2}-E_{2} \\
U=E_{1}-U R_{1} \cdot I_{1}
\end{array}\right.
\end{aligned}
$$

