
DEVOPS TOOLS (IAC)
HOW TO CREATE AND

MAINTAIN INFRASTRUCTURE
AS CODE

CHAPTER 1
INTRODUCTION TO DEVOPS

1. DEFINITION
1. DevOps

2. Infrastructure

2. TRADITIONAL IT
3. BENEFITS
4. PROCESS FLOW
5. TOOLS USED
6. METHODOLOGIES AGAINST

DEVOPS

SUMMARY

Word origin
Contraction of the word developer and operation (sysadmin, netadmin, dbadmin)
Definition from the web
DevOps (a portmanteau of "development" and "operations") is the combination of
practices and tools designed to increase an organization’s ability to deliver
applications and services faster than traditional software development processes
In summary:

DevOps is a methodology to achieve software development
DevOps setup practises and tools
These practises and tools enhance delivery (fiability, speed)

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 1 INTRODUCTION TO DEVOPS
1.1 Definitions - DevOps 4

Infrastructure
IT infrastructure provides all the necessary compute, storage, networking and
software components necessary to deliver a service.

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 1 INTRODUCTION TO DEVOPS
1.1 Definitions - Infrastructure 5

Every infrastructure component is unique and special.
Built at different times with slightly different processes.

Built by different people with different levels of experience.

"Just make it work."

Infrastructure is rarely replaced and is fanatically supported throughout its
lifecycle.
Infrastructure changes are carefully controlled by a Change Advisory Board
(CAB).

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 1 INTRODUCTION TO DEVOPS
1.2 Traditional IT - pt. 1 6

Role of IT operations staff:
Gatekeepers for all IT services in the organization.

"The Office of No."

Often partitioned into specialist teams:
Network engineers

Storage engineers

Security analysts

DBAs

Ops team focused on preventing infrastructure failure.
"Keep the lights on."

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 1 INTRODUCTION TO DEVOPS
1.2 Traditional IT - pt. 2 7

Faster time to market
Higher ROI
Improved collaboration
Better efficiency
Preventive or early correction of issues

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 1 INTRODUCTION TO DEVOPS
1.3 Benefits 8

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 1 INTRODUCTION TO DEVOPS
1.4 Process Flow as a circle 9

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 1 INTRODUCTION TO DEVOPS
1.4 Process Flow as a loop 10

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 1 INTRODUCTION TO DEVOPS
1.4 Process Flow as a diagram 11

Plan: Organize and schedule tasks
Code: Code development and review
Build: Build the source code
Test: Implement code tests (unitary, integration, non regression)
Release: Prepare code for deployment
Deploy: Set up code in production
Operate: Maintain the infrastructure
Monitor: Watch code performance, errors...

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 1 INTRODUCTION TO DEVOPS
1.4 Process flow explained 12

Version control: GitHub, GitLab
Containers: Docker, Kubernetes
Monitoring: Prometheus, Grafana, Sensu, Datadog, Splunk
Configuration management: Chef, Puppet, Ansible, SaltStack, Helm
CI/CD: Jenkins, Travis CI, GitLab
Tests: Selenium, Dynatrace
Infrastructure: Terraform, Vagrant, Packer,

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 1 INTRODUCTION TO DEVOPS
1.5 Process flow tools 13

Information Technology Infrastructure Library v4 (ITIL v4)
Change management governance

Value chain

Site Reliability Engineer (SRE) from Google
Dedicated job into a team

Software Engineer doing operational tasks

Error budget → Interruption allowed for project

DevOps
Multidisciplinary teams (Ops and Dev in the same team)

All methodologies tend to be similar in some points

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 1 INTRODUCTION TO DEVOPS
1.6 Methodologies against DevOps 14

CHAPTER 2
PART 1: TERRAFORM

What is Terraform ?
Open source solution developed by HashiCorp since 2014
Not only system but also solutions
Multi-vendor (providers): AWS, GCP, Azure, Alibabacloud, vRA, Cisco

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 TERRAFORM
16

How it works
Resources are described in configuration files
Main commands:

terraform init: Create required files and download providers, modules or backends

terraform plan: Create a plan of changes (do not alterate infrastructure)

terraform apply: Apply a plan and change infrastructure

terraform destroy: Destroy all resources

Relies on a file containing the infrastructure state at all moment

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 TERRAFORM
17

How it works (Scheme)

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 TERRAFORM
18

"init" command
Initialize backend
Install required resources

Modules

Providers

Example
$ terraform init

Initializing the backend...

Initializing provider plugins...

Terraform has been successfully initialized!

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 TERRAFORM
19

"plan" command
Plan the changes
terraform plan -out tf.plan writes plan in a tf.plan file

Read the current state to make sure the terraform state is up-to-date

Construct dependencies between resources

Compare configurations

Propose change actions

Useful arguments
Setting Command-line option

-out Save plan to a file
-refresh=false TF will not sync before compare
-

target=ADDRESS

Tells Terraform to focus on specific resources and on any object they
depend on

-destroy Speculative destroy plan (useful with –target)

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 TERRAFORM
20

"apply" command
Apply the changes
terraform apply tf.plan apply a tf.plan file

Apply actions proposed in the tf.plan

Update the tfstate file

It is better to always apply a previously tf.plan file, otherwise terraform will make a plan of your whole

configuration before applying it

Useful arguments
Setting Command-line option

-auto-approve Skips interactive approval of plan before applying (only if no plan file was
given)

-

parallelism=n

limits the number of concurrent operations, default is 10

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 TERRAFORM
21

Other commands
terraform fmt to format your code

terraform taint to force resource recreation on the next apply

terraform state to manage state

terraform refresh to refresh the state with remote resource actual configuration

And more to see using terraform help...

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 TERRAFORM
22

Variables
Each input variable must be declared using a block:
Optional arguments:

default: a default value

type: the value type (string,number,bool, list, map, …)

description: to explain the purpose of this variable

validation: a block to define validation rule

sensitive: limit Terraform output

Example
variable "a_variable" {

 type = "string"

 description = "I am a variable containing a default value"

 default = "I have a default value"

}

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 TERRAFORM
23

Outputs
Each output variable must be declared using a block:
Optional arguments:

description: to explain the purpose of this variable

sensitive: to mark an output as containing sensitive information (limits Terraform's output)

Example
output "msg" {

 value = "I use a variable content: ${var.a_variable}"

 description = "Test of a sensitive variable"

 sensitive = true

}

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 TERRAFORM
24

Workspaces
Each terraform code has an associated backend

Backend defines how operations are executed and where persistent data such as the Terraform state are

stored

Persistent data stored in the backend belongs to a workspace

By default, backend has only one workspace, called “default” and is not removable

Certain backends (like local, Amazon S3, Postgres, GCP bucket, …)
(https://www.terraform.io/docs/language/state/workspaces.html) support
multiple named workspaces

It then allows multiple states to be associated with a single configuration

Example
resource "aws_instance" "example" {

 tags = {

 Name = "web - ${terraform.workspace}"

 }

 # ... other arguments

}

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 TERRAFORM
25

https://www.terraform.io/docs/language/state/workspaces.html

Providers
Providers are Terraform "plugins" to interact with cloud providers
You must declare which providers are required, and Terraform will install them

https://registry.terraform.io/browse/providers

Each provider adds a list of dedicated resource(s) and data(s)

Example
terraform {

 required_providers {

 vra = {

 source = "vmware/vra"

 version = "~> 0.3.6"

 }

 }

}

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 TERRAFORM
26

https://registry.terraform.io/browse/providers

Resources pt. 1
Resources are the most important stuff to understand!!!
Each resource block describes one or more infrastructure objects (virtual
network, VM, …)
Resource blocks can include lots of parameters but not all of them are
mandatory
Every Terraform provider has its own documentation:

Example of GCP: https://registry.terraform.io/providers/hashicorp/google/latest/docs

Example of VRA: https://registry.terraform.io/providers/vmware/vra/latest/docs

Each resource block corresponds to an object in the infrastructure and has an
identifier in the Terraform state

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 TERRAFORM
27

https://registry.terraform.io/providers/hashicorp/google/latest/docs
https://registry.terraform.io/providers/vmware/vra/latest/docs

Resources pt. 2
We declare a resource of a given type ("aws_instance") with a given resource
key ("web")
This resource key must be unique!
Resource attributes :

Are used to access information <RESOURCE TYPE>.<RESOURCE KEY>.<ATTRIBUTE>

Help to configure and make implicit dependencies

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 TERRAFORM
28

Resources pt. 3

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 TERRAFORM
29

Provider: Data
DATA is a special type of resource used only for looking up information (READ-
ONLY)
DATA exports attributes which can be used as follow: data...

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 TERRAFORM
30

Locals
Variables can’t be computed -> locals is the solution

https://www.terraform.io/docs/language/values/locals.html

Note: Local values are created by a locals block (plural), but you reference
them as attributes on an object named local (singular)

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 TERRAFORM
31

https://www.terraform.io/docs/language/values/locals.html

Backend
By default, the state is written in a local file terraform.tfstate
The state must be kept in a safe place:

Only authorized for authorized persons (secrets inside)

Prevents corruption

Keeps revision history

Only certain backends support multiple workspaces
S3, Postgres, ...

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 TERRAFORM
32

Modules
Modules are containers for multiple resources that are used together
Modules are the main way to package and reuse resource configurations with
Terraform
Modules can be called multiple times within the same configuration
Modules are downloaded and stored locally when Terraform initiates

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 TERRAFORM
33

How to use modules
Using module blocks

Source argument tells Terraform where to find the module

Include contents of that module into the configuration with specific values for its input variables

Module can declare output values to export certain values to be accessed
outside of that module module.<MODULE_NAME>.<OUTPUT_NAME>

Example
module "servers" {

 source = "./my-source"

 servers = 5

}

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 TERRAFORM
34

State management
terraform import allows you to import previously created resources and to add it in
the terraform state
terraform state list shows you all the resources present in the state

terraform state pull > {{nameyouwant}} manually downloads the terraform state file

terraform state push {{nameyouwant}} manually uploads a local terraform state file

terraform state mv {{SOURCE}} {{DESTINATION}} used to continue tracking resources
renamed or moved to a module
terraform state rm removes the track of a resource in the terraform state without
deleting it

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 TERRAFORM
35

State lock
On each state READ or WRITE, the state is locked by terraform
If you break terraform gracefully (Ctrl + C) on your local linux machine, it will
unlock it
If you break terraform hard (multiple Ctrl +C), close the shell, cancel gitlab
pipeline, etc., the state will remain locked
Unlocking could be done manually on cloud console or using terraform force-
unlock LOCK_ID

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 TERRAFORM
36

CHAPTER 2
PART 2: ANSIBLE

1. DEFINITION
2. CONCEPTS
3. INSTALLING ANSIBLE

SUMMARY

Definition
Ansible is an open-source software provisioning, configuration management, and
application-deployment tool. It runs on many Unix-like systems, and can configure
both Unix-like systems as well as Microsoft Windows. It includes its own declarative
language to describe system configuration.

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
39

Introduction
Cross platfom support:

Agentless : using Openssh or WinRm, no agent on host.

Support for Linux, Windows, UNIX, and network devices.

Physical, virtual, cloud, and container environments.

Human-readable automation:
Simple.

Ansible Playbooks, written as YAML text files.

Perfect description of applications:
Every change can be made by Ansible Playbook.

Every aspect of your application environment can be described and documented.

Easy to manage in version control:
Ansible Playbooks and projects are plain text.

They can be treated like source code and placed in your existing version control system

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
40

Introduction
Support for dynamic inventories:

List of machines that Ansible manages can be dynamically.

Updated from external sources.

Servers all the time, regardless of infrastructure or location.

Orchestration that integrates easily with other systems::
HP SA, Puppet, Jenkins, Red Hat Satellite, …

Other systems that exist in your environment.

DevOps oriented:
Automation language that can be read and written across IT.

Can automate the application life cycle and continuous delivery pipeline from start to finish.

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
41

Introduction
Two types of machines :

Control nodes :
Ansible installation and execution.

Copies of ansible project files.

Managed hosts:
Hosts to manage.

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
42

Introduction

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
43

Concepts
Modules:
Modules (also referred to as “task plugins” or “library plugins”) are discrete units
of code that can be used from the command line or in a playbook task. Ansible
executes each module, usually on the remote target node, and collects return
values.

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
44

Concepts
Tasks:

Runs a module: Module generally ensures that some particular thing about the machine is in a particular

state: File exists,particular permissions , contents, mounted file system…

If the system is not in that state, the task should put it in that state.
If the system is already in that state, it should do nothing.
If a task fails, Ansible's default behavior is to abort the rest of the playbook.

This property is called IDEMPOTENCE

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
45

Concepts
Play: A play is a set of tasks that should be run in sequential order and on a
given set of servers

- hosts: webservers #Target set of server

 tasks: #List of tasks

 - name: ensure apache is at the latest version

 yum: # Yum module

 name: httpd

 state: latest

 - name: write the apache config file

 template:

 src: /srv/httpd.j2

 dest: /etc/httpd.conf

 notify:

 - restart apache

 - name: ensure apache is running

 service:

 name: httpd

 state: started

Playbook: A set of one or more plays
DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
46

Concepts
Inventory:

List of managed hosts

Organizes system into logical groups

Groups of groups

Variables (more on that later)

Can be either static or dynamic

Example :
mail.example.com

[webservers]

foo.example.com

bar.example.com

[dbservers]

one.example.com

two.example.com

three.example.com

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
47

Ansible philosophy
Complexity Kills Productivity: Simpler is better.
Tools should be simple to use.
Automation is simple to write and read.

Optimize For Readability:
The Ansible automation language: easy for humans to read.
Simple, declarative, text-based files.
Ansible Playbooks can clearly document your workflow automation.

Think Declaratively:
Ansible: desired-state engine.
Ansible's goal is to put your systems into the desired state.
Only making changes that are necessary.
Not scripting language.

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
48

Ansible philosophy
Combines and unites orchestration with configuration:
Management, provisioning, and application deployment in one easy-to-use
platform.

Configuration Management:
Centralizing configuration file management and deployment.

Application Deployment:
Application definition with Ansible, deployment management with Ansible
Tower.
Manage the entire application life cycle from development to production.

Provisioning:
Help streamline the process of provisioning systems.
Whether PXE booting and kickstarting bare-metal servers or virtual machines,
Or creating virtual machines or cloud instances from templates.

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
49

Ansible philosophy
Continuous Delivery: CI/CD pipeline requires coordination and buy-in from
numerous teams.
Ansible Playbooks keep your applications properly deployed (and managed).

Security and Compliance: Security policy is defined in Ansible.
Scanning and remediation can be integrated into other automated processes.

Orchestration: Configurations alone don't define your environment.
Define how multiple Configurations interact.
Ensure the disparate pieces can be managed as a whole.

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
50

Installation
Control Nodes:

Only needs to be installed on the control node.

Minimal requirements:

The control node should be a Linux or UNIX system.
Python 2 or 3 needs to be installed. Reference

Managed Hosts :

Linux and UNIX managed hosts need to have Python 2 (version 2.4 or later).
Ssh daemon configuration and reachable.
Windows managed hosts: Powershell 3.0 and .NET 4.0 at least + WinRM
listener activated

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
51

https://www.ansible.com/get-started

Configuration files
Configuration file (ordered) :

$ANSIBLE_CONFIG
$(pwd)/ansible.cfg (Recommended practice)
~/.ansible.cfg
/etc/ansible/ansible.cfg

Find out what file is used :
$ ansible --version

ansible 2.13.5

 config file = /etc/ansible/ansible.cfg

Tip (Will highlight any non default value) :
$ ansible-config dump

ACTION_WARNINGS(default) = True

AGNOSTIC_BECOME_PROMPT(default) = True

ALLOW_WORLD_READABLE_TMPFILES(default) = False

...

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
52

Configuration options
ansible.cfg (ini format) :
[defaults]

inventory = ./inventory # The location of the Ansible inventory

remote_user = someuser # The user used for the CONNECTION

ask_pass = false # Does the CONNECTION require a password ?

[privilege_escalation]

become = true # Enable privilege escalation

become_method = sudo # Method used to escalate

become_user = root # Which user to escalate to

become_ask_pass = false # Does the ESCALATION require a password ?

Reference :
$ ansible-config list

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
53

Building a STATIC inventory
Ini formatted text file :
[usa]

washington1.example.com

washington2.example.com

[canada]

ontario01.example.com

ontario02.example.com

[north-america:children]

canada

usa

Can be tested with :
$ ansible-inventory --graph

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
54

Building a STATIC inventory
Good to know :

Two groups always exist :
all : Refers to all hosts explicitly listed in the inventory

ungrouped : Every host that is NOT a member of any other group, except all

Ranges can be used in a python style [START:END:STEP(default=1)]
192.168.[4:7].[0:255] : All IPv4 addresses in the 192.168.4.0/22 network (192.168.4.0 through

192.168.7.255).

server[01:20].example.com : All hosts named server01.example.com through server20.example.com

[a:c].dns.example.com : Hosts named a.dns.example.com,b.dns.example.com, and c.dns.example.com.

2001:db8::[a:f] : All IPv6 addresses from 2001:db8::a through 2001:db8::f

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
55

DYNAMIC inventory
Dynamic inventory script : Executable programs that collects information from
some external source. Output the inventory in JSON format.

Contributed scripts : Not included in the ansible package or officially
supported by Red Hat. Ansible GitHub site at https://github.com/ansible-
collections/community.general/tree/main/plugins/inventory.

Write your own dynamic inventory script ? : See the Ansible Developer
Guide:
https://docs.ansible.com/ansible/latest/dev_guide/developing_inventory.html#developing-
inventory

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
56

https://github.com/ansible-collections/community.general/tree/main/plugins/inventory
https://docs.ansible.com/ansible/latest/dev_guide/developing_inventory.html#developing-inventory

Running Ad Hoc commands :
Execute a single task (module) :

ansible host-pattern -m module [-a 'module arguments'] [-i inventory]

Useful commands :

ansible-doc -l #Lists all the modules that are installed on the system.

ansible-doc “name” #View the documentation of particular modules by name.

You can find all the modules on Ansible website :
https://docs.ansible.com/ansible/2.9/modules/modules_by_category.html

Shell vs Command
Command : Allows administrators to quickly execute remote commands on managed hosts. No access to
shell environement variables.

Shell : Access to shell environment variables and shell operations.

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
57

https://docs.ansible.com/ansible/2.9/modules/modules_by_category.html

Why are Command and Shell modules evil ?
Modules, in general, offer various benefits :

Idempotence

Check-mode

Diff output

Sanity checks

Return values

All of these properties are not available by default for the command and shell
module. We will see how to work around that later

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
58

Command line options
You can use command line options to override configuration.

Setting Command-line option
inventory -i, --inventory
user -u, --user
become -b, --become
become_method --become-method
become_user --become-user
become_ask_pass -K, --ask-become-pass
Full reference :
ansible --help

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
59

What is a playbook ?
Text file that contains a list of one or more plays to run in order written in YAML.

Adhoc vs playbook
Ad hoc :

ansible -m user -a "name=newbie uid=4000 state=present" servera.lab.example.com

Playbook :

- name: Configure important user

 hosts: servera.lab.example.com

 tasks:

 - name: newbie exists with UID 4000

 user:

 name: newbie

 uid: 4000

 state: present

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
60

Running playbook
You can run playbook using ansible-playbook binary.

Executed on the control node.

The name of the playbook passed as an argument.

ansible-playbook yourplay.yml

Ansible playbooks should be idempotent
You can run them safely multiple times

Syntax verification with the --syntax-check option

ansible-playbook --syntax-check yourplay.yml

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
61

Execute a dry run
Use the -C or --check option :

Report what changes would have occurred if the playbook were executed. No actual
changes to managed hosts.
ansible-playbook -C yourplay.yml

Monitor changes by using the --diff option :

Prints a diff of every file changed
ansible-playbook --diff yourplay.yml

Combine the two to be sure of what will be delivered :
ansible-playbook --diff -C yourplay.yml

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
62

Implementing multiple plays

This is a simple playbook with two plays

- name: first play

 hosts: web.example.com

 tasks:

 - name: first task

 yum:

 name: httpd

 state: present

 - name: second task

 service:

 name: httpd

 enabled: true

- name: second play

 hosts: database.example.com

 tasks:

 - name: first task

 yum:

 name: mariadb

 state: presentDEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
63

Remote Users and Privilege Escalation in Plays
User attribute : User that is used to connect to hosts can be defined by the
remote_user parameter.

remote_user: remoteuser

Privilege Escalation Attributes :

- name: first play

 hosts: web.example.com

 become: true

 become_method: sudo

 become_user: privileged used

 tasks:

 - name: first task

 yum:

 name: httpd

 state: present

 - name: second task

 service:

 name: httpd

 enabled: true

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
64

A few notes on YAML (Comments and strings)
Comments :

This is a YAML comment

some data # This is also a YAML comment

Strings :

string: this is a string

string2: 'this is another string'

string3: "this is yet another a string"

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
65

A few notes on YAML (Multilines)
The | character (Newline characters within the string are to be preserved.)

include_newlines: |

 Example Company

 123 Main Street

 Atlanta, GA 30303

The > character (Newline characters are converted into spaces)

fold_newlines: >

 This is

 a very long,

 long, long, long

 sentence.

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
66

A few notes on YAML (Arrays and dictionnaries)
Arrays (Lists):

multiline_style_list:

 - servera

 - serverb

 - serverc

inline_style_list: [servera, serverb, serverc]

Dictionnaries:

multiline_style_dict:

 name: svcrole

 svcservice: httpd

 svcport: 80

inline_syte_dict: {name: svcrole, svcservice: httpd, svcport: 80}

The multiline syntax is recommended

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
67

Variables
Variables can be useful for dynamic configuration, execution control etc...

Naming Variables :

Variable names should be letters, numbers, and underscores. Variables should
always start with a letter.
foo_port is a great variable. foo5 is fine too.

foo-port, foo port, foo.port and 12 are not valid variable names.

Variables scope:

A variable can be defined on three different scopes :

Global
Play
Host

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
68

Defining variables in playbooks
Using vars directive :

- hosts: all

 vars:

 user: joe

 home: /home/joe

Using vars_files directive :

- hosts: all

 vars_files:

 - vars/users.yml

$ cat vars/users.yml

user: joe

home: /home/joe

Overriding Variables from the Command Line :

ansible-playbook main.yml -e "package=apache"

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
69

Using variables
Use the double curly braces.
vars:

 user: joe

tasks:

 # This line will read: Creates the user joe

 - name: Creates the user {{ user }}

 user:

 # This line will create the user named Joe

 name: "{{ user }}"

When a variable is used as the first element to start a value, quotes are
mandatory
name: "{{ user }}" # Valid

name: {{ user }} # Invalid

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
70

Using variables
With the following inventory content:
users:

 bjones:

 first_name: 'Bob'

 acook:

 home_dir: '/home/acook'

Syntax to access to variables:
Returns 'Bob'

users.bjones.first_name

Returns /users/acook

users.acook.home_dir

Or (python dictionnary)
Returns 'Bob'

users['bjones']['first_name']

Returns '/users/acook'

users['acook']['home_dir']

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
71

Host variables and group variables
This is the recommended way to set variables

Group variables: Apply to all hosts in a group or its children groups

Host variables: Apply to a single host

[datacenter1]

demo1.example.com

demo2.example.com

[datacenter2]

demo3.example.com

demo4.example.com

[datacenters:children]

datacenter1

datacenter2

$ cat ~/project/group_vars/datacenter1

package: httpd

$ cat ~/project/group_vars/datacenter2

package: apache

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
72

Recommended directory layout
inventories/

 production/

 hosts # inventory file for production servers

 group_vars/

 group1.yml # here we assign variables to particular groups

 group2.yml

 host_vars/

 hostname1.yml # here we assign variables to particular systems

 hostname2.yml

 staging/

 hosts # inventory file for staging environment

 group_vars/

 group1.yml # here we assign variables to particular groups

 group2.yml

 host_vars/

 stagehost1.yml # here we assign variables to particular systems

 stagehost2.yml

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
73

Registered variables
Allows to capture the output of a module
- name: Installs a package and prints the result

 hosts: all

 tasks:

 - name: Install the package

 yum:

 name: httpd

 state: installed

 register: install_result

 - debug: var=install_result

Debug module is used to dump the value of a given variable

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
74

Facts
Facts are values automatically retrieved by Ansible at the start of a play
To get a list of available facts for a system:
ansible demo1.example.com -m setup

{

 "ansible_all_ipv4_addresses": [

 "REDACTED IP ADDRESS"

],

 "ansible_all_ipv6_addresses": [

 "REDACTED IPV6 ADDRESS"

],

 "ansible_apparmor": {

 "status": "disabled"

 },

 "ansible_architecture": "x86_64",

 "ansible_bios_date": "11/28/2013",

 "ansible_bios_version": "4.1.5",

 ...

}

Set gather_facts: no in a play to disable itDEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
75

Custom facts
Stored locally on each managed host

/etc/ansible/facts.d directory

Example:
File: custom.fact (INI or JSON format)

{

 "packages":{

 "web_package": "httpd",

 "db_package": "mariadb-server"

 },

 "users": {

 "user1": "joe",

 "user2": "jane"

 }

}

ansible_local['custom']['users']['user1'] is joe

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
76

Magic variables
Set of variables automatically defined by Ansible
group_names : Lists all groups the current managed host is in

groups : Lists all groups in the inventory

inventory_hostname : Name of the current host as defined in the inventory (not as
discovered by Ansible)
See all magic variables here

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
77

https://docs.ansible.com/ansible/latest/reference_appendices/special_variables.html#special-variables

Includes
Useful for long and complex playbooks.
Allows to cut tasks and variables in smaller pieces for more readability

Include tasks:

 tasks:

 - name: Include tasks to install the database server

 include_tasks: tasks/db_server.yml

Include variables:

 tasks:

 - name: Include the variables from a YAML or JSON file

 include_vars: vars/variables.yml

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
78

Before :
- name: Postfix is running

 service:

 name: postfix

 state: started

- name: Dovecot is running

 service:

 name: dovecot

 state: started

After :
- name: Services are running

 service:

 name: "{{ item }}"

 state: started

 loop:

 - postfix

 - dovecot

Loops
Sometimes you want to repeat a task multiple times. In computer programming,
this is called a loop.
Simple loops : Use the loop keyword

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
79

Iterating over a variable :
vars:

 mail_services:

 - postfix

 - dovecot

tasks:

- name: Services are running

 service:

 name: "{{ item }}"

 state: started

 loop: "{{ mail_services }}"

Iterating over a list of dictionaries :
- name: Users exists

 user:

 name: "{{ item.name }}"

 state: present

 groups: "{{ item.groups }}"

 loop:

 - name: jane

 groups: wheel

 - name: joe

 groups: root

Loops over lists

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
80

Nested loops
Iterating over a list of dictionaries :
tasks:

 - name: All DB users have privileges

 mysql_user:

 name: "{{ item[0] }}"

 priv: "{{ item[1] }}:ALL"

 append_privs: yes

 password: redhat

 loop: "{{ ['joe', 'jane'] | product(['clientdb', 'employeedb', 'providerdb']) | list }}"

Older syntax (still works):
with_nested:

 - ['joe','jane']

 - ['clientdb', 'employeedb','providerdb']

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
81

Other types of loops
Loop keyword Description
with_file Takes a list of control node file names. item is set to the content of

each file in sequence.
with_fileglob Takes a file name globbing pattern. item is set to each file in a

directory on the control node that matches that pattern, in sequence,
non-recursively

with_sequence Generates a sequence of items in increasing numerical order. Can
take start and end arguments which have a decimal, octal or
hexadecimal integer value.

with_random_choice Takes a list. item is set to one of the list items at random.
Refer to the Full reference for more

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
82

https://docs.ansible.com/ansible/latest/user_guide/playbooks_loops.html?highlight=loop#loops

Conditionals
Sometimes you will want to skip a particular step on a particular host. That's what
conditionals are for.

Use the when statement :
When the expression after the when is true, the task is RUN

When the expression after the when is false, the task is SKIPPED

The expression may include operators like and, or, not. Just like in vanilla python

Examples :
when: item.mount == "/" and item.size_available > 300000000

when: ansible_distribution == "RedHat" or ansible_distribution == "Fedora"

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
83

Combining loops and conditionals
You can combine the when statement with a loop statement. In that case, the
expression after the when will be processed for each item inside the loop.

Example :
- name: Install mariadb-server if enough space

 yum:

 name: mariadb-server

 state: latest

 loop: "{{ ansible_mounts }}"

 when: item.mount == "/" and item.size_available > 3000000000

CAREFUL : The expression in a when statement does not use curly braces for
variables

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
84

Handlers
Often when you change a configuration, you may want to restart or reload the
service to take the changes into account. This is what handlers are for

Definition : A handler is a task that will only run when another task triggered it.
It will be run at the end of the play that triggered it.

Use the handlers statement (play level) to declare your handlers

Use the notify statement to run the handler when the task reports changed

Example :
tasks:

 - name: copy demo.example.conf configuration template

 copy:

 src: /var/lib/templates/demo.example.conf.template

 dest: /etc/httpd/conf.d/demo.example.conf

 notify:

 - restart_apache

handlers:

 - name: restart_apache

 service:

 name: httpd

 state: restartedDEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
85

Tags
Tags allow you to run or skip specific parts of a playbook by specifying it on the
command line

- name: Example play using tags

 hosts:

 - servera

 - serverb

 tasks:

 - name: httpd is installed

 yum:

 name: httpd

 state: installed

 tags: webserver

 - name: postfix is installed

 yum:

 name: postfix

 state: latest

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
86

Tags
Once your tasks or plays are tagged, you can only run or skip them using :
ansible-playbook main.yml --tags webserver # Runs only tasks tagged : webserver

ansible-playbook main.yml --skip-tags webserver # Runs every tasks except those tagged : webserver

There is one special tag that you can apply :

always : always run unless explicitly skipped by --skip-tags option

There are system tags that are available by default :

tagged : Any tagged resource

untagged : Exclude all tagged ressource

all : Select all tasks (that is the default)

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
87

Handling errors and changed status
You can override the situations in which Ansible will report a failed or a changed for a
task. To do so, you must use the failed_when and changed_when directive.

failed_when example :

tasks:

 - shell: /usr/local/bin/create_users.sh

 register: command_result

 failed_when: "'Password missing' in command_result.stdout"

changed_when example :

tasks:

 - shell: /usr/local/bin/upgrade-database

 register: command_result

 changed_when: "'Success' in command_result.stdout"

!!! When you use the evil shell and command modules, you should always make
sure you use failed_when and changed_when to allow ansible to properly
report the result !!!

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
88

Blocks
You can write blocks of tasks in your playbooks, which can have two main benefits :

Avoid repeating when statements

Better error management (see next slide)

- name: block example

 hosts: all

 tasks:

 - block:

 - name: package needed by yum

 yum:

 name: yum-plugin-versionlock

 state: present

 - name: lock version of tzdata

 lineinfile:

 dest: /etc/yum/pluginconf.d/versionlock.list

 line: tzdata-2016j-1

 state: present

 when: ansible_distribution == "Redhat"

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
89

Handling errors with blocks
Blocks enable you to handle errors kind of like how you would handle exception in
code.

rescue statement : The tasks in this block will be run if there is a failure in the
block statement.
always statement : The tasks in this block will be run after those in the block,
regardless of failure or not.

tasks:

 - block:

 - name: upgrade the database

 shell: /usr/local/lib/upgrade-database

 rescue:

 - name: revert the database upgrade

 shell: /usr/local/lib/revert-database

 always:

 - name: always restart the database

 service:

 name: mariadb

 state: restarted

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
90

Overview
Jinja 2 is a templating framework in python and the templating engine of choice of
Ansible.
Why do I need it ? : When you deliver a configuration file, you may want to make
that configuration dynamic. Thanks to templates you can modify the content of files
you deliver using variables.
Ansible allows :

Referencing variables in playbooks with Jinja2
Jinja2 loops and conditionals in templates
Loops and conditionals are available in tasks and playbooks

- name: "[Servicetool] Pull corresponding image"

 docker_image:

 name: 'registry-production.svc.meshcore.net/lgs-platform/awl-c7-elasticsearch7{% if elasticsearch_r

 source: pull

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
91

Delimiters
Variables or logic are place between tags

Expression or logic : {% ... %}

Variables : {{ ... }} (By now you should be familiar with this notation)

Comments : {# ... #}

Example :

{# for statement #}

{% for myuser in users if not myuser == "Snoopy"%}

{{loop.index}} - {{ myuser }}

{% endfor %}

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
92

Jinja2 loops and conditionals
Loop :

{% for user in users %}

 {{ user }}

{% endfor %}

Conditionals :

{% if finished %}

 {{ result }}

{% endif %}

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
93

Jinja2 Filters
Change output format to JSON or YAML for template expressions:
{{ output | to_json }}

{{ output | to_yaml }}

Format expression output in human-readable format:
{{ output | to_nice_json }}

{{ output | to_nice_yaml }}

Parse string provided in JSON or YAML format:
{{ output | from_json }}

{{ output | from_yaml }}

Also available in playbooks :
- debug: msg="the execution was aborted"

 when: returnvalue is failed

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
94

Build a Jinja2 Template
Jinja2 template is composed of two elements:

Variables
Expressions

You can therefore use variables or facts in templates.
Example template for motd :
Welcome to {{ ansible_hostname }}. Today's date is: {{ ansible_date_time.date }}.

Example template for a loadbalancer section
{% for myhost in groups['myhosts'] %}

{{ myhost }}

{% endfor %}

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
95

Actually use the template in playbook
Use the little cousin of the copy module, a.k.a template module :

tasks:

 - name: template render

 template:

 src: /tmp/j2-template.j2

 dest: /tmp/dest-config-file.conf

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
96

Problems we may encounter
Datacenters include variety of host types:

Web servers

Database servers

Hosts containing software development tools

Playbooks require tasks and handlers to manage these
Result: large and complex playbooks

Roles can split playbooks into smaller playbooks and files

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
97

Role definition
Roles are ways of automatically loading certain vars_files, tasks, and handlers
based on a known file structure. Grouping content by roles also allows easy sharing
of roles with other users.

Enable Ansible to load components from external files:
Tasks

Handlers

Variables

Associate and reference:
Static files

Templates

Files defining roles:
Given specific names

Organized in directory structure

Roles written as general purpose can be reused

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
98

Benefits
Roles promote easy sharing of content

Roles can define essential elements of a system type:
Web server

Database server

Git repository

Other purposes

Roles make larger projects more manageable

Administrators can work on different project roles in parallel

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
99

Structure
Role functionality defined by directory structure

Top-level directory: Defines role name

Subdirectories: Contain main.yml file

files and templates subdirectories: Contain objects referenced by main.yml files

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
100

What does it look like ?
.

├── defaults

│ └── main.yml

├── files

│ └── atos_ca.pem

├── molecule

├── handlers

│ └── main.yml

├── meta

│ └── main.yml

│ └── requirements.yml

├── README.md

├── tasks

│ └── main.yml

├── templates

│ ├── login.defs.j2

│ ├── nsswitch.conf.j2

│ ├── pam_sshd.j2

│ ├── pam_system-auth.j2

│ └── sssd.conf.j2

└── vars

 └── main.yml

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
101

Subdirectories
Subdirectory Function
defaults Contains default values that are meant to be overridden
files Static files
handlers Handlers definitions
meta Metadata about the role (author, license, dependencies)
tasks Tasks files
templates Jinja2 templates used by the role
test (or

molecule)

Contains playbooks and other files to test the role

vars Contains variables NOT meant to be overriden (mostly constants
despite what the name suggests

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
102

Variables vs defaults
To define role variables, create vars/main.yml with name/value pairs in
hierarchy

YAML uses role variables like any other variable: {{ VAR_NAME }}

High priority

Cannot be overridden by inventory variables

Use default variables to set default values for included or dependent role
variables

To define default variables, create defaults/main.yml with name/value pairs in hierarchy

Lowest priority of any variables

Overridden by any other variable

Best practice: Define variable in vars/main.yml or defaults/main.yml

Use default variable when role needs value to be overridden

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
103

Use roles in playbook
A very complex syntax is required to use the roles in a playbook

- hosts: all

 roles:

 - role1

 - role2

OR when specifying variables

- hosts: all

 roles:

 - { role: role1 }

 - { role: role2, var1: val1, var2: val2 }

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
104

Dependencies
Sometimes roles may depend on other roles
Example: Role defining documentation server depends on role that installs and
configures web server
Define roles in meta/main.yml in directory hierarchy:

dependencies:

 - { role: apache, port: 8080 }

 - { role: postgres, dbname: serverlist, admin_user: felix }

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
105

Order of Execution
Default: Role tasks execute before tasks of playbooks in which they appear

To override default, use pre_tasks and post_tasks
pre_tasks: Tasks performed before any roles applied

post_tasks: Tasks performed after all roles completed

hosts: remote.example.com

 pre_tasks: - shell: echo 'hello'

 roles:

 - role1

 - role2

 tasks: - shell: echo 'still busy'

 post_tasks:

 - shell: echo 'goodbye'

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
106

Role creation
Simple to create roles in Linux

No special development tools required

Three-step process:
Create role directory structure

Define role content

Use role in playbook.

You can easily create a role with the directory structure with:

$> ansible-galaxy init <role-name>

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
107

How to load roles
Ansible looks for roles in:

roles subdirectory

Directories referenced by roles_path
Located in Ansible configuration file

Contains list of directories to search

Each role has directory with specially named subdirectories

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
108

Content example
tasks/main.yml file manages /etc/motd on managed hosts

Uses template to copy motd.j2 to managed host

Retrieves motd.j2 from role’s templates subdirectory:

roles/motd/tasks/main.yml

– name: deliver motd file

 template:

 src: templates/motd.j2

 dest: /etc/motd

 owner: root

 mode: 0444

References Ansible facts and system_owner variable:

roles/motd/templates/motd.j2

This is the system {{ ansible_hostname }}.

Today's date is: {{ ansible_date_time.date }}.

Only use this system with permission. You can ask {{ system_owner }} for access.

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
109

Calling role example
Use motd with different value for system_owner
someone@host.example.com replaces variable reference when role is applied
to managed host:

use-motd-role.yml

- name: use motd role playbook

 hosts: remote.example.com

 user: devops

 become: true

 roles:

 - { role: motd, system_owner: someone@host.example.com }

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
110

Testing roles
As roles are meant to be generic, they should be tested in various cases to ensure
they work consistently.
The de-facto standard for testing Ansible roles is Molecule

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
111

https://molecule.readthedocs.io/en/stable/

SSH is critical to ansible
Ansible uses SSH protocol to make remote connections to target nodes

If pipelining not enabled, SSH connection used to:
Transfer modules and template files

Run remote commands

Run playbook plays on managed hosts

Fast, stable, secure SSH connection critical to Ansible

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
112

Connection plugins
These plugins are the most used by the community:

Setting Description
paramiko Python implementation of SSH protocol. Offers backward compatibility

for RHEL6 and earlier. No support for OpenSSh ControlPersist
local Runs commands locally
ssh Uses OpenSSH-based connection< Supports ControlPersist

docker Connects to container via docker exec
netconf Provides a persistent connection using the netconf protocol (XML over

SSH)
httpapi Use httpapi to run command on network appliances (API over HTTP)

network_cli Use network_cli to run command on network appliances (CLI over SSH)

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
113

Connection plugins
More plugins are also used by the community:

chroot

libvirt_lxc

kubectl

Not based on SSH

Pluggable and extensible

More types being added

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
114

Connection Type Configuration
ansible.cfg
To specify connection type in [defaults], use transport:

[defaults]

some basic default values...

...output omitted...

#transport = smart

To override default transport value, use -c when:
Running ad hoc command using ansible
Running playbook using ansible-playbook

Best practice: Leave connection type in ansible.cfg set to smart
Configure playbooks or inventory files to choose alternative connection setting

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
115

Connection Type Configuration when running playbooks
As we just saw, you can do that on the command line :
[student@demo ~]$ ansible-playbook playbook.yml --connection=local

OR directly in the playbook you want to run :

- name: Connection type in playbook

 hosts: 127.0.0.1

 connection: local

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
116

SSH Connection Configuration
Examples: ansible.cfg

[ssh_connection]

...output omitted...

control_path = %(directory)s/%%h-%%r

pipelining = False

scp_if_ssh = True

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
117

Environment settings
Use the environment statement :

At the task level :

- hosts: devservers

 tasks:

 - name: download a file using demo.lab.example.com as proxy

 get_url:

 url: http://materials.example.copm/file.tar.gz

 dest: ~/Downloads

 environment:

 http_proxy: http://demo.lab.example.com:8080

At the play level :

- hosts: demohost

 roles:

 - php

 - nginx

 environment:

 http_proxy: http://demo.lab.example.com:8080DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
118

Delegation
Some tasks must be delegated to different server from the one being managed
Examples:

Sending notifications
Waiting for server to be restarted
Adding server to load balancer/monitoring server
Making changes to DNS/networking configurations

Delegation helps run tasks to certain classes of hosts

Example: Those outside current play

#task

- name: Running Local Process

 command: ps

 delegate_to: localhost

 register: local_process

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
119

Delegated facts
By default, any fact gathered by a delegated task are assigned to the
inventory_hostname (the current host) instead of the host which actually produced
the facts (the delegated to host).

- hosts: app_servers

 tasks:

 - name: gather facts from db servers

 setup:

 delegate_to: "{{item}}"

 delegate_facts: True

 loop: "{{groups['dbservers']}}"

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
120

Parallelism
Ansible supports running tasks in parallel to all hosts

Provides more control over playbook execution

Default: Ansible forks up to five times
Runs task on five different machines at once

Default value set in ansible.cfg:

[student@demo ~]$ grep forks /etc/ansible/ansible.cfg

#forks = 5

For more than five managed hosts, change forks to match environment

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
121

Parallelism (serial keyword)
To reduce number of machines running in parallel, use serial

Sets lower fork number than global value in ansible.cfg

Primary use case: Control rolling updates

Example: Website is deployed on 100 web servers
Can define number or percentage

- name: test play

 hosts: webservers

 serial: 2

 gather_facts: False

 tasks:

 - name: task one

 command: hostname

 - name: task two

 command: hostname

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
122

Asynchronous
Asynchronous Tasks

Some tasks take long time to complete

Examples: Downloading large file, rebooting server

Using parallelism with forks, Ansible:
Starts command quickly on managed hosts

Polls hosts for status until all are finished

To run operation in parallel, use async and poll

- hosts: all

 remote_user: root

 tasks:

 - name: simulate long running op (15 sec), wait for up to 45 sec, poll every 5 sec

 command: /bin/sleep 15

 async: 45

 poll: 5

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
123

Asynchronous
async: Triggers Ansible to run job in background and check later

Value indicates maximum time Ansible waits for command to complete

poll: Sets how often Ansible checks if command has completed

Default value: 10 seconds

name: Long running task

hosts: demoservers

remote_user: devops

tasks:

 - name: Download big file

 get_url: url=http://demo.example.com/bigfile.tar.gz

 async: 3600

 poll: 10

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
124

Extremely long tasks
Option Description

Use wait_for
module

Blocking call, Ansible will wait for a system to be reachable

Set poll to 0 Non blocking call, but Ansible will not check completion or failure
of the task

Set async to 0 Blocking call, Ansible waits as long as the job takes

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
125

Example : Rebooting a server
- name: restart machine

 shell: sleep 2 && shutdown -r now "Ansible updates triggered"

 async: 1

 poll: 0

 become: true

 ignore_errors: true

- name: waiting for server to come back

 wait_for:

 host: "{{ inventory_hostname }}"

 state: started

 delay: 30

 timeout: 300

Tip : Since Ansible 2.7, you can use the mighty reboot module

- name: Restart and wait until the server is rebooted

 hosts: demoservers

 tasks:

 - name: restart machine

 reboot:

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
126

Task status
To check task status, use async_status module and job id
- name: Download big file

 get_url: url=http://demo.example.com/bigfile.tar.gz

 async: 3600

 poll: 0

 register: download_sleeper

- name: Wait for download to finish

 async_status:

 jid: "{{ download_sleeper.ansible_job_id }}"

 register: job_result

 until: job_result.finished

 retries: 30

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
127

10. Troubleshoot

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

128

Log files
Not configured by default
log_path parameter in the default section of the ansible.cfg configuration file.
ANSIBLE_LOG_PATH environment variable

Example :
ansible.cfg

[defaults]

log_path = /home/student/troubleshooting/ansible.log

inventory = /home/student/troubleshooting/inventory

Configure logrotate to manage Ansible's log file .

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
129

Verbosity level
You can modify the output of ansible and ansible-playbook command

Verbosity options :
-v : Output data

-vv : Output and input data

-vvv : Output and input data and connection informations

-vvvv : Extra verbosity options to the connection plug-ins, Users, scripts…

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
130

Debug module
Use the debug module to output certain variables to the user at runtime

Example:
- debug:

 msg: "The free memory for this system is {{ ansible_memfree_mb }}"

- debug:

 var: output

 verbosity: 2

The verbosity argument specifies that the debug task will be skipped unless ansible-
playbook is run with superior or equal verbosity level

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
131

Managing errors
Several tools are at your disposal to troubleshoot your playbooks

Syntax check
$ ansible-playbook play.yml --syntax-check

Step by step execution
$ ansible-playbook play.yml --step

Start at task
$ ansible-playbook play.yml --start-at-task="start httpd service"

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
132

Reminder : Execute a dry run
Use the -C or --check option :

Report what changes would have occurred if the playbook were executed. No actual
changes to managed hosts.
ansible-playbook -C yourplay.yml

Monitor changes by using the --diff option :

Prints a diff of every file changed
ansible-playbook --diff yourplay.yml

Combine the two to be sure of what will be delivered :
ansible-playbook --diff -C yourplay.yml

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
133

Check mode setting
On tasks you can use the check-mode setting to configure the task behavior while
running in check-mode
There are two options:

Force a task to run in check mode, even when the playbook is called without --
check. This is called check_mode: yes.

Force a task to run in normal mode and make changes to the system, even
when the playbook is called with --check. This is called check_mode: no.

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
134

Integrate tests into your playbooks
uri module:

Provides a way to check that a RESTful API is returning the required content.

script module:

Don't abuse it !!

Supports the execution of a script on a managed host.

Failing if the return code for that script is non-zero.

stat module:

Can check that files and directories not managed directly by Ansible are present.

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

CHAPTER 2 ANSIBLE
135

QUESTION TIME

PRACTICAL WORK

Use of Ansible
Use of Vagrant to deploy some VMs to interact with
Make a first use of Ansible
Discover all seen concepts

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

PRACTICAL WORK 1ST
138

Use of Terraform
Create some resource and interact with using Ansible
Combine both tools to deploy a fully working application
Exam

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

PRACTICAL WORK 2ND
139

EXAM INFORMATION

Exam will be an MCQ with some questions being written
DevOps (25%)

Definition (written)

Some questions about DevOps way of working

Ansible (40%)
Principal paradigms

Main competitor

Command validity

Inventory

Terraform (35%)
How it works

Resources/Modules

Differents main commands

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

EXAM INFORMATIONS WRITTEN EXAM
141

Deploy a fully working application (database, application and loadbalancer)
using Terraform (with Docker) and Ansible

Only last lab will be graded (last 2 hours) - 75% of grade

Write a report on what you have achieved with explanation on code/your choice - 25% of grade

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

EXAM INFORMATIONS PRACTICAL WORK (AKA LABS)
142

In case of questions, you can reach me:
By mail

alexis.leroux@worldline.com or alexis.leroux@ext.unilasalle.fr

By SMS
+33677084962

Don't ask for exam subject 😉

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

EXAM INFORMATIONS INFORMATIONS
143

mailto:alexis.leroux@worldline.com
mailto:alexis.leroux@ext.unilasalle.fr

JOB TIME

Accelerate SysOps agility - Dev web portal
Portail web

Affichage du statut des sauvegardes dans le OnPrem via les API de CommVault

Information NFS pour cartographie.

SysOps : Automation with a CI/CD pipeline on “Red Hat Entreprise Linux 9”
Stage d'automatisation avec pipeline CI/CD pour notre nouvel OS RHEL9 .

SysOps : Automation with Ansible
Ansible Validation Platform

Elastic stack Industrialization & SELinux Hardening
Automatiser notre capacité à déployer nos stacks Elastic.

Nous aider dans la sécurisation de nos plateformes avec SELinux

Kubernetes Automation & SysOps
Openshift vs Kubernetes

Katello tooling & Security report
Pipeline CI/CD pour valider notre capacité à faire les campagnes de patch

Générer les rapports de vulnérabilités.

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

JOBS SYSTEM OPERATIONS INTERNSHIP
145

External interconnection as a managed service
Définir nos offres d’interconnexions operateur privées sur nos infrastructures Cloud

Automatiser le déploiement des configurations associées

Cloud Security hardening
Définir nos architectures Cloud en lien avec les normes PCI et SecNumCloud

Automatiser le déploiement des configurations associées

Faciliter les audits

Cloud Multisite Load Balancer
NetOps & Cloud automation (plusieurs stages de ce type)

Développer les nouvelles fonctionnalités nécessaires à nos outils en utilisant Terraform, Ansible, pipeline

gitlab CI/CD

CCAP - Web security anomaly detection improvement
Détecter et reporter les anomalies dégradant le niveau de service ou de protection (santé des équipements,

niveau de sécurité, cohérence de configuration ainsi que les attaques applicatives)

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

JOBS NETWORK OPERATIONS INTERNSHIP
146

Développement d’une pipeline gitlab qui devra être déclenchée
automatiquement à la mise à jour de nos standards d’installation. Ce process
devra produire une box (image) utilisable par tous les membres de l’équipe sur
leurs pc. Ce qui permettra à chacun de pouvoir tester/vérifier les dernières
modifications.

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

JOBS DATABASE OPERATIONS INTERNSHIP
147

DevOps for Kubernetes Infrastructure - GitOps
DevOps for Kubernetes Infrastructure – Security and Compliancy

DEVOPS TOOLS (IAC) - NOV. 2022

Version 1.0

JOBS OPENSHIFT INTERNSHIP
148

