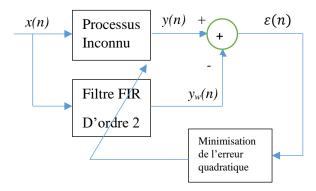
	FILTRAGE 14	Année : 2014-2015
ESIEE AMIENS	Travaux dirigés : n°1	Date :28-08-14
	Remis par : N. ZITOUNI	

Le but de ce TD est d'étudier analytiquement, dans un premier temps, le filtrage adaptatif appliqué à la suppression d'interférences, puis dans un second temps, expérimentalement à travers la simulation sur matlab.

EXERCICE I

On donne le système suivant :



- 1- Exprimer l'expression de l'échantillon du signal estimé $y_w(n)$ en fonction des échantions x(n) et des coefficients du filtre FIR.
- 2- Exprimer la puissance moyenne de l'erreur quadratique ε (n) calculée sur N points
- 3- Trouver les coefficients w_i qui minimisent la fonction coût $J(\varepsilon)=E\{\varepsilon^2(n)\}$

EXERCICE II

On considère un problème de soustraction de bruit où u(n) est la référence bruit en entrée du filtre de Wiener. Le signal observé est x(n) = s(n) + b(n). On suppose par ailleurs que l'on dispose d'un lien entre u(n) et $\hat{b}(n)$: $\hat{b}(n) = \sum_{i=0}^{P-1} \alpha_i u(n-i)$

- 1. Donner le schéma synoptique du système et exprimer le vecteur d'intercorrélation Rux en fonction de la matrice de corrélation Ruu et du vecteur des coefficients α ,
- **2.** Quel est le filtre de Wiener optimal?
- **3.** Donner l'algorithme du gradient.
- **4.** Quel est le pas optimal théorique μ ? Donner une valeur pratique dans le cas où u(n) est un bruit blanc de variance σ 2 ?

EXERCICE III

Dans le but de vous familiariser avec les résultats de la corrélation, appliquez la fonction de corrélation $R_{xy}=xcorr(y,x,L,'unbiased')$ à chacun des trois signaux suivants :

```
x_c{=}sin(2\pi n/N) , ~x_q{=}square(2\pi n/N) , ~x_g{=}randn(size(n)) ; où N=50 et n=0 :1000. Pour faire :
```

- 1. Calculer et tracer chaque signal dans une fenêtre.
- 2. Calculer et tracer chaque fonction d'autocorrélation dans une autre fenêtre à côté du signal correspondant.
- 3. Quelle est l'utilité du paramètre L?
- 4. Que doit être le maximum de chaque fonction d'autocorrélation?
- 5. Calculer et tracer l'intercorrélation entre x_c et x_q . Prenez garde à l'ordre des signaux.

EXERCICE IV

On souhaite extraire un signal inconnu s(n) fortement perturbé par le réseau électrique de fréquence 50Hz. Pour ce faire, on a mesuré simultanément le signal du réseau x(n) et le signal bruité y(n) en les échantillonnant à la fréquence $f_c=10$ kHz. Pour résoudre ce problème,

1. Charger les signaux contenus dans le fichier xy50hz.txt

```
Signaux=load('xy50hz.txt');
xn=signaux(:,1);
yn=signaux(:,2);
```

- 2. Tracez x(n) et y(n)
- 3. Dessiner le schéma de Wiener ; où se trouve le signal s(n) ?
- 4. Rechercher s(n) en appliquant l'algorithme de Wiener Hopf avec 2 paramètres.
- 5. Augmenter le nombre de paramètres P ; Observer leur valeurs et la puissance de s(n) ; Conclure ;
- 6. Calculer le rapport signal sur bruit : $S_{\text{eff}}/y_{\text{eff}}$.

1- La fonction de transfert du filtre FIR est :

$$H(z) = \sum_{i=0}^{2} w_i z^{-i}$$

Donc l'expression de $y_w(n)$ est :

$$y_w(n) = \sum_{i=0}^{2} w_i x(n-i) = w_o x(n) + w_1 x(n-1) + w_2 x(n-2)$$

$$2-\ \varepsilon^2(n)=(y(n)-y_w(n))^2=(y(n)-w_0x(n)-w_1x(n-1)-w_2x(n-2))^2$$

La fonction coût vaut :

$$J(\varepsilon) = E\{\varepsilon^{2}(n)\} = \frac{1}{N} \sum_{n=0}^{N-1} \varepsilon^{2}(n) = \frac{1}{N} \sum_{n=0}^{N-1} (y(n) - w_{0}x(n) - w_{1}x(n-1) - w_{2}x(n-2))^{2}$$

 w_0 , w_1 et w_2 qui minimisent la fonction coût s'obtiennent comme suit :

$$\frac{\partial J(\varepsilon)}{\partial w_0} = \frac{2}{N} \sum_{n=0}^{N-1} (y(n) - w_0 x(n) - w_1 x(n-1) - w_2 x(n-2)) (-x(n)) = 0$$

$$\frac{\partial J(\varepsilon)}{\partial w_1} = \frac{2}{N} \sum_{n=0}^{N-1} (y(n) - w_0 x(n) - w_1 x(n-1) - w_2 x(n-2)) (-x(n-1)) = 0$$

$$\frac{\partial J(\varepsilon)}{\partial w_2} = \frac{2}{N} \sum_{n=0}^{N-1} (y(n) - w_0 x(n) - w_1 x(n-1) - w_2 x(n-2)) (-x(n-2)) = 0$$

Ce qui donne :

$$\frac{1}{N} \sum_{n=0}^{N-1} y(n) x(n) = w_0 \frac{1}{N} \sum_{n=0}^{N-1} x(n) x(n) + w_1 \frac{1}{N} \sum_{n=0}^{N-1} x(n) x(n-1) + w_2 \frac{1}{N} \sum_{n=0}^{N-1} x(n) x(n-2)$$

$$\frac{1}{N} \sum_{n=0}^{N-1} y(n)x(n-1) = w_0 \frac{1}{N} \sum_{n=0}^{N-1} x(n)x(n-1) + w_1 \frac{1}{N} \sum_{n=0}^{N-1} x(n-1)x(n-1) + w_2 \frac{1}{N} \sum_{n=0}^{N-1} x(n-1)x(n-2)$$

$$\frac{1}{N}\sum_{n=0}^{N-1}y(n)x(n-2) = w_0\frac{1}{N}\sum_{n=0}^{N-1}x(n)x(n-2) + w_1\frac{1}{N}\sum_{n=0}^{N-1}x(n-1)x(n-2) + w_2\frac{1}{N}\sum_{n=0}^{N-1}x(n-2)x(n-2)$$

Donc :

$$R_{yx}(0) = w_0 R_{xx}(0) + w_1 R_{xx}(1) + w_2 R_{xx}(2)$$

$$R_{yx}(1) = w_0 R_{xx}(1) + w_1 R_{xx}(0) + w_2 R_{xx}(1)$$

$$R_{yx}(1) = W_0 R_{xx}(1) + W_1 R_{xx}(0) + W_2 R_{xx}(1)$$

$$R_{yx}(2) = w_0 R_{xx}(2) + w_1 R_{xx}(1) + w_2 R_{xx}(0)$$

 $R_{xx}(i) = R_{xx}(-i)$: La fonction d'autocorrélation est une fonction paire

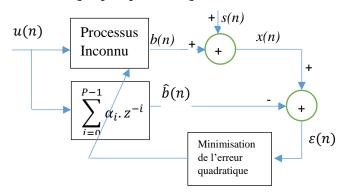
Donc :

$$\begin{pmatrix} R_{yx}(0) \\ R_{yx}(1) \\ R_{yx}(2) \end{pmatrix} = \begin{pmatrix} R_{xx}(0) & R_{xx}(1) & R_{xx}(2) \\ R_{xx}(1) & R_{xx}(0) & R_{xx}(1) \\ R_{xx}(2) & R_{xx}(1) & R_{xx}(0) \end{pmatrix} \cdot \begin{pmatrix} w_0 \\ w_1 \\ w_2 \end{pmatrix}$$

Ce qui donne
$$\begin{pmatrix} w_0 \\ w_1 \\ w_2 \end{pmatrix} = \begin{pmatrix} R_{xx}(0) & R_{xx}(1) & R_{xx}(2) \\ R_{xx}(1) & R_{xx}(0) & R_{xx}(1) \\ R_{xx}(2) & R_{xx}(1) & R_{xx}(0) \end{pmatrix}^{-1} \cdot \begin{pmatrix} R_{yx}(0) \\ R_{yx}(1) \\ R_{yx}(2) \end{pmatrix}$$

Solution EXOII

1-Le schéma synoptique du système est :



2- Le filtre de Wiener optimal est donné par l'équation : $\alpha=R_{uu}^{-1}.R_{xu}$ Avec α vecteur de dimension P et R_{uu} est la matrice d'autocorrélation de u

$$R_{uu}(i) = \frac{1}{N} \sum_{n=0}^{N-1} x(n-1)x(n-i)$$

Et

$$R_{xu}(i) = \frac{1}{N} \sum_{n=0}^{N-1} x(n-1)u(n-i)$$

3- L'algorithme du gradient (appelé aussi RLMS: Recursive Least Mean Square) permet de calculer le vecteur $\pmb{\alpha}$ des coefficients du filtre adaptatif. Il est donné par :

$$\alpha_n = \alpha_{n-1} + \mu(x_n - U_n^T.\alpha_{n-1})U_n^T$$

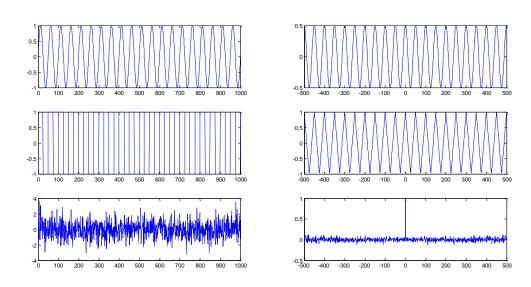
Avec

* $\pmb{\alpha}_n$ vecteur des coefficients du filtre adaptatif calculés à l'instant nTe : $\alpha_n = \begin{pmatrix} \alpha_0 \\ \cdots \\ \alpha_{P-1} \end{pmatrix}$.

- $st \mathcal{X}_n$, dernier échantillon mesuré en sortie.
- $*U_n^T$ est le transposé du vecteur d'entrée. $U_n^T = [u_n \, u_{n-1} \, u_{n-2} \, \ldots \, u_{n-P+1} \,]$
- * μ est le pas d'adaptation
- ${}^*x_n U_n^T.lpha_{n-1}$ est l'erreur de prédiction à priori.
- 4- La valeur optimale théorique du pas d'adaptation doit être $0<\mu<\frac{2}{P\sigma_x^2}$ P : L'ordre du filtre
 - σ_u^2 : La variance du signal d'entrée c'est-à-dire sa puissance moyenne. Valeur pratique $\mu=\frac{\mu_0}{p_\sigma^2}$ Avec $\mu_0pprox (0.01,...,0.01)$

Solution EXOIII

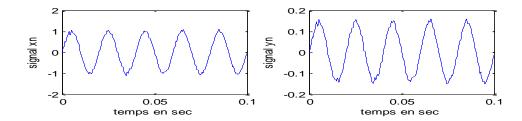
```
n=0:1000;
   N=50;
%calcul des signaux
   xc=sin(2*pi*n/N);
   xq=square(2*pi*n/N);
   xg=randn(size(n));
%tracé des signaux
   subplot(321),plot(n,xc);
   subplot(323),plot(n,xq);
```



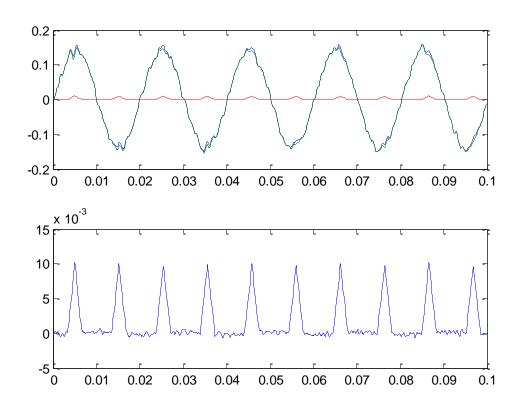
```
%calcul des intercorrélations
   [Rxcxq,tau]=xcorr(xc,xq,500,'unbiased');
   [Rxqxc,tau]=xcorr(xq,xc,500,'unbiased');
%tracé des intercorrélations
   subplot(322),plot(tau,Rxcxq);
   subplot(324),plot(tau,Rxqxc);
```

Solution EXO IV

```
1.
signaux=load('C:\MATLAB\Travail\xy50hz.txt');
xn=signaux(:,1);
yn=signaux(:,2);
2.
fe=10000;
N=length(xn);
n=0:N-1;
t=n/fe;
subplot(221),plot(t,xn);
subplot(222),plot(t,yn);
```



```
<u>3.</u>
                                 sn
응
           |======| yw
응
   xn====>|proces inconnu |===>+===|
응
      |=======|
                                    l yn
응
                                     +====|
            |======| ^yw
응
응
       ====>|filtre |de Wiener |=====|
                                         |epsilon(n)
응
            |======|
응
                    |-----|
응
% Dans le cas optimal, le signal erreur epsilon sera égal à sn ( signal
% recherché). dans ce cas W=inv(Rxx)*Ryx et sn=epsilon=yn-yw
응
<u>4.</u>
\overline{x}=xn;
y=yn;
P=10;
[Rxx,tau1]=xcorr(x,x,P-1,'none');
[Ryx,tau2]=xcorr(y,x,P-1,'none');
Rxx=Rxx(max(tau1)+1:2*max(tau1)+1);
Rxx=toeplitz(Rxx);
Ryx=Ryx(max(tau2)+1:2*max(tau2)+1);
W=inv(Rxx)*Ryx
yw=filter(W,[1,0],x);
s=y-yw;
clg;
subplot(211),plot(t,y,t,yw);
subplot(211), plot(t,s);
```



```
x=xn;
y=yn;
Seff=((1/N) *sum(s.^2))
Yeff=((1/N) *sum(y.^2))
RSN=Seff/Yeff
```